老司机加油算法
原创约 2048 字
本文讲解的例题
LeetCode | 力扣 | 难度 |
---|---|---|
134. Gas Station | 134. 加油站 | 🟠 |
今天讲一个贪心的老司机的故事,就是力扣第 134 题「加油站」:
134. 加油站 | 力扣 | LeetCode |
在一条环路上有 n
个加油站,其中第 i
个加油站有汽油 gas[i]
升。
你有一辆油箱容量无限的的汽车,从第 i
个加油站开往第 i+1
个加油站需要消耗汽油 cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas
和 cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1
。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2] 输出: 3 解释: 从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油 开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油 开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油 开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油 开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油 开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。 因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3] 输出: -1 解释: 你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。 我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油 开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油 开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油 你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。 因此,无论怎样,你都不可能绕环路行驶一周。
提示:
gas.length == n
cost.length == n
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
题目应该不难理解,就是每到达一个站点 i
,可以加 gas[i]
升油,但离开站点 i
需要消耗 cost[i]
升油,问你从哪个站点出发,可以兜一圈回来。
要说暴力解法,肯定很容易想到,用一个 for 循环遍历所有站点,假设为起点,然后再套一层 for 循环,判断一下是否能够转一圈回到起点:
int n = gas.length;
for (int start = 0; start < n; start++) {
for (int step = 0; step < n; step++) {
int i = (start + step) % n;
tank += gas[i];
tank -= cost[i];
// 判断油箱中的油是否耗尽
}
}
很明显时间复杂度是 ,这么简单粗暴的解法一定不是最优的,我们试图分析一下是否有优化的余地。
暴力解法是否有重复计算的部分?是否可以抽象出「状态」,是否对同一个「状态」重复计算了多次?
我们前文 动态规划详解 说过,变化的量就是「状态」。那么观察这个暴力穷举的过程,变化的量有两个,分别是「起点」和「当前油箱的油量」,但这两个状态的组合肯定有不下 种,显然没有任何优化的空间。
所以说这道题肯定不是通过简单的剪枝来优化暴力解法的效率,而是需要我们发现一些隐藏较深的规律,从而减少一些冗余的计算。
下面我们介绍两种方法巧解这道题,分别是数学图像解法和贪心解法。