Exercise: Trie Problems on LeetCode
Note
Now all the plugins has supported English. I'm still improving the website...
This article will resolve
LeetCode | Difficulty |
---|---|
1804. Implement Trie II (Prefix Tree)🔒 | 🟠 |
208. Implement Trie (Prefix Tree) | 🟠 |
211. Design Add and Search Words Data Structure | 🟠 |
648. Replace Words | 🟠 |
677. Map Sum Pairs | 🟠 |
With TrieMap
and TrieSet
, you can directly apply them to all prefix tree-related problems on LeetCode. Let me demonstrate with a few examples.
Optimization Tips
Firstly, the TrieMap/TrieSet
implementation provided in the previous article TrieMap/TrieSet Code Implementation has room for optimization in specific problems.
For instance, the input for prefix tree-related problems on LeetCode is restricted to lowercase English letters a-z
. Therefore, the TrieNode
does not need to maintain a children
array of size 256; a size of 26 is sufficient, reducing time and space complexity.
Additionally, the Java/Cpp code provided earlier includes generics, which are not necessary when solving algorithm problems. Removing generics can also improve efficiency.
208. Implement Trie (Prefix Tree)
Let's take a look at LeetCode problem 208, "Implement Trie (Prefix Tree)":
208. Implement Trie (Prefix Tree) | LeetCode |
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (i.e., was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example 1:
Input ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] Output [null, null, true, false, true, null, true] Explanation Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // return True trie.search("app"); // return False trie.startsWith("app"); // return True trie.insert("app"); trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 104
calls in total will be made toinsert
,search
, andstartsWith
.
The functions that the problem asks us to implement are actually part of the TrieSet
API. So, we can solve this problem by simply encapsulating a TrieSet
:
class Trie {
// directly encapsulate TrieSet
TrieSet set = new TrieSet();
// insert an element
public void insert(String word) {
set.add(word);
}
// check if the element is in the set
public boolean search(String word) {
return set.contains(word);
}
// check if there is an element with prefix in the set
public boolean startsWith(String prefix) {
return set.hasKeyWithPrefix(prefix);
}
}
// see above
class TrieSet {}
648. Replace Words
Next, let's look at LeetCode's Problem 648 "Replace Words":
648. Replace Words | LeetCode |
In English, we have a concept called root, which can be followed by some other word to form another longer word - let's call this word derivative. For example, when the root "help"
is followed by the word "ful"
, we can form a derivative "helpful"
.
Given a dictionary
consisting of many roots and a sentence
consisting of words separated by spaces, replace all the derivatives in the sentence with the root forming it. If a derivative can be replaced by more than one root, replace it with the root that has the shortest length.
Return the sentence
after the replacement.
Example 1:
Input: dictionary = ["cat","bat","rat"], sentence = "the cattle was rattled by the battery" Output: "the cat was rat by the bat"
Example 2:
Input: dictionary = ["a","b","c"], sentence = "aadsfasf absbs bbab cadsfafs" Output: "a a b c"
Constraints:
1 <= dictionary.length <= 1000
1 <= dictionary[i].length <= 100
dictionary[i]
consists of only lower-case letters.1 <= sentence.length <= 106
sentence
consists of only lower-case letters and spaces.- The number of words in
sentence
is in the range[1, 1000]
- The length of each word in
sentence
is in the range[1, 1000]
- Every two consecutive words in
sentence
will be separated by exactly one space. sentence
does not have leading or trailing spaces.
Now that you have learned the Trie data structure, you should be able to see that this problem is about finding the shortest prefix.
So you can store the input list of roots dict
in a TrieSet
, and then simply reuse the shortestPrefixOf
function we implemented:
String replaceWords(List<String> dict, String sentence) {
// first, store all the roots in the TrieSet
TrieSet set = new TrieSet();
for (String key : dict) {
set.add(key);
}
StringBuilder sb = new StringBuilder();
String[] words = sentence.split(" ");
// process the words in the sentence
for (int i = 0; i < words.length; i++) {
// search for the shortest root (shortest prefix) in the Trie tree
String prefix = set.shortestPrefixOf(words[i]);
if (!prefix.isEmpty()) {
// if found, replace with the root
sb.append(prefix);
} else {
// otherwise, keep the original word
sb.append(words[i]);
}
if (i != words.length - 1) {
// add spaces between words
sb.append(' ');
}
}
return sb.toString();
}
// see above
class TrieSet {}
// see above
class TrieMap {}
211. Add and Search Word - Data Structure Design
Let's continue with LeetCode Problem 211: "Add and Search Word - Data Structure Design":
211. Design Add and Search Words Data Structure | LeetCode |
Design a data structure that supports adding new words and finding if a string matches any previously added string.
Implement the WordDictionary
class:
WordDictionary()
Initializes the object.void addWord(word)
Addsword
to the data structure, it can be matched later.bool search(word)
Returnstrue
if there is any string in the data structure that matchesword
orfalse
otherwise.word
may contain dots'.'
where dots can be matched with any letter.
Example:
Input ["WordDictionary","addWord","addWord","addWord","search","search","search","search"] [[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]] Output [null,null,null,null,false,true,true,true] Explanation WordDictionary wordDictionary = new WordDictionary(); wordDictionary.addWord("bad"); wordDictionary.addWord("dad"); wordDictionary.addWord("mad"); wordDictionary.search("pad"); // return False wordDictionary.search("bad"); // return True wordDictionary.search(".ad"); // return True wordDictionary.search("b.."); // return True
Constraints:
1 <= word.length <= 25
word
inaddWord
consists of lowercase English letters.word
insearch
consist of'.'
or lowercase English letters.- There will be at most
2
dots inword
forsearch
queries. - At most
104
calls will be made toaddWord
andsearch
.
The key point of this problem lies in the search
function for wildcard matching. In fact, it's similar to the hasKeyWithPattern
method we implemented in TrieSet
. You can directly apply that here:
class WordDictionary {
TrieSet set = new TrieSet();
// add elements to TrieSet
public void addWord(String word) {
set.add(word);
}
// wildcard matching elements
public boolean search(String word) {
return set.hasKeyWithPattern(word);
}
}
// see above
class TrieSet {}
// see above
class TrieMap {}
The above problems all use TrieSet
. Now let's look at problems involving TrieMap
.
1804. Implement a Trie (Prefix Tree II)
First, let's look at LeetCode problem 1804 "Implement Trie II":
1804. Implement Trie II (Prefix Tree) | LeetCode |
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.int countWordsEqualTo(String word)
Returns the number of instances of the stringword
in the trie.int countWordsStartingWith(String prefix)
Returns the number of strings in the trie that have the stringprefix
as a prefix.void erase(String word)
Erases the stringword
from the trie.
Example 1:
Input ["Trie", "insert", "insert", "countWordsEqualTo", "countWordsStartingWith", "erase", "countWordsEqualTo", "countWordsStartingWith", "erase", "countWordsStartingWith"] [[], ["apple"], ["apple"], ["apple"], ["app"], ["apple"], ["apple"], ["app"], ["apple"], ["app"]] Output [null, null, null, 2, 2, null, 1, 1, null, 0] Explanation Trie trie = new Trie(); trie.insert("apple"); // Inserts "apple". trie.insert("apple"); // Inserts another "apple". trie.countWordsEqualTo("apple"); // There are two instances of "apple" so return 2. trie.countWordsStartingWith("app"); // "app" is a prefix of "apple" so return 2. trie.erase("apple"); // Erases one "apple". trie.countWordsEqualTo("apple"); // Now there is only one instance of "apple" so return 1. trie.countWordsStartingWith("app"); // return 1 trie.erase("apple"); // Erases "apple". Now the trie is empty. trie.countWordsStartingWith("app"); // return 0
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 104
calls in total will be made toinsert
,countWordsEqualTo
,countWordsStartingWith
, anderase
. - It is guaranteed that for any function call to
erase
, the stringword
will exist in the trie.
This problem can use TrieMap
, where each inserted word
is the key, and the number of insertions is the corresponding value. By reusing the TrieMap
API, you can implement the required functions for this problem:
class Trie {
// encapsulate our implementation of TrieMap
TrieMap<Integer> map = new TrieMap<>();
// insert word and record the number of insertions
public void insert(String word) {
if (!map.containsKey(word)) {
map.put(word, 1);
} else {
map.put(word, map.get(word) + 1);
}
}
// query the number of insertions of word
public int countWordsEqualTo(String word) {
if (!map.containsKey(word)) {
return 0;
}
return map.get(word);
}
// accumulate the total number of insertions for keys with prefix
public int countWordsStartingWith(String prefix) {
int res = 0;
for (String key : map.keysWithPrefix(prefix)) {
res += map.get(key);
}
return res;
}
// decrease the number of insertions of word by one
public void erase(String word) {
int freq = map.get(word);
if (freq - 1 == 0) {
map.remove(word);
} else {
map.put(word, freq - 1);
}
}
}
// see above
class TrieMap {}
677. Map Sum Pairs
Since it's just applying a template directly, let's look at the last problem. This is LeetCode Problem 677: "Map Sum Pairs":
677. Map Sum Pairs | LeetCode |
Design a map that allows you to do the following:
- Maps a string key to a given value.
- Returns the sum of the values that have a key with a prefix equal to a given string.
Implement the MapSum
class:
MapSum()
Initializes theMapSum
object.void insert(String key, int val)
Inserts thekey-val
pair into the map. If thekey
already existed, the originalkey-value
pair will be overridden to the new one.int sum(string prefix)
Returns the sum of all the pairs' value whosekey
starts with theprefix
.
Example 1:
Input ["MapSum", "insert", "sum", "insert", "sum"] [[], ["apple", 3], ["ap"], ["app", 2], ["ap"]] Output [null, null, 3, null, 5] Explanation MapSum mapSum = new MapSum(); mapSum.insert("apple", 3); mapSum.sum("ap"); // return 3 (apple = 3) mapSum.insert("app", 2); mapSum.sum("ap"); // return 5 (apple + app = 3 + 2 = 5)
Constraints:
1 <= key.length, prefix.length <= 50
key
andprefix
consist of only lowercase English letters.1 <= val <= 1000
- At most
50
calls will be made toinsert
andsum
.
This problem is a standard application of TrieMap
. Let's directly look at the code:
class MapSum {
// encapsulate our implemented TrieMap
TrieMap<Integer> map = new TrieMap<>();
// insert key-value pair
public void insert(String key, int val) {
map.put(key, val);
}
// sum the values of all keys with the prefix
public int sum(String prefix) {
List<String> keys = map.keysWithPrefix(prefix);
int res = 0;
for (String key : keys) {
res += map.get(key);
}
return res;
}
}
// see above
class TrieMap {}
The principles and practical problems of implementing the Trie data structure have been covered. If you've read this far, you truly deserve applause. There's a saying, "Learning from books is superficial; true understanding comes from practice." I highly recommend that you personally implement the code above and solve related problems to gain a deeper understanding of the Trie tree.
Related Problems
You can install my Chrome extension then open the link.
LeetCode | Difficulty |
---|---|
14. Longest Common Prefix | 🟢 |