Thinking Recursion Algorithms from Binary Tree Perspective
Note
Now all the plugins has supported English. I'm still improving the website...
This article will resolve
LeetCode | Difficulty |
---|---|
104. Maximum Depth of Binary Tree | 🟢 |
144. Binary Tree Preorder Traversal | 🟢 |
543. Diameter of Binary Tree | 🟢 |
Prerequisites
Before reading this article, you should first study:
How to Read This Article
This article abstracts and summarizes many algorithms, so it contains many links to other articles.
If you are reading this article for the first time, don't try to learn everything in one go. If you encounter an algorithm you haven't studied or don't understand, just skip it. You only need to have a general impression of the theories summarized in this article.
As you learn more advanced algorithm techniques on this site, you will gradually understand the essence of this article. When you come back to reread this article later, you will have a deeper understanding.
The structure of my historical public account articles is built according to the framework proposed in Framework Thinking for Learning Data Structures and Algorithms. This framework emphasizes the importance of binary tree problems, which is why this article is included in the must-read series of the first chapter.
After solving problems for many years, I condensed the essence of binary tree algorithms into a comprehensive guide here. Although the language might not be very professional and no textbook might include my summarized experiences, currently, no binary tree problem on any problem-solving platform falls outside the framework defined in this article. If you find a problem incompatible with the framework provided here, please leave a comment to let me know.
Let's summarize at the beginning: there are two thinking patterns for solving binary tree problems:
1. Can you get the answer by traversing the binary tree once? If yes, use a traverse
function with external variables to achieve this. This is called the "traversal" thinking pattern.
2. Can you define a recursive function that derives the answer to the original problem from the answers to sub-problems (subtrees)? If yes, write out the definition of this recursive function and make full use of its return value. This is called the "decomposition" thinking pattern.
Regardless of which thinking pattern you use, you need to consider:
If you extract a single binary tree node, what does it need to do? When (pre/in/post-order) does it need to do it? You don't have to worry about other nodes; the recursive function will help you perform the same operation on all nodes.
In this article, I will use problems as examples, but they will be the simplest ones, so don't worry about not understanding them. I can help you extract the commonalities of all binary tree problems from the simplest ones and elevate the thinking involved in binary trees. This thinking can be applied to Dynamic Programming, Backtracking Algorithms, Divide and Conquer Algorithms, and Graph Theory Algorithms. This is why I always emphasize framework thinking. I hope that after learning the advanced algorithms mentioned above, you can come back and review this article for a deeper understanding.
First, I must tirelessly emphasize the importance of the binary tree data structure and its related algorithms.
The Importance of Binary Trees
For example, consider two classic sorting algorithms: Quick Sort and Merge Sort. What do you understand about them?
If you tell me that Quick Sort is essentially a pre-order traversal of a binary tree, and Merge Sort is a post-order traversal of a binary tree, then I would know you are an algorithm expert.
Why do Quick Sort and Merge Sort relate to binary trees? Let's briefly analyze their algorithmic concepts and code structures:
The logic of Quick Sort is that to sort nums[lo..hi]
, we first find a pivot p
. By swapping elements, we ensure that nums[lo..p-1]
are all less than or equal to nums[p]
, and nums[p+1..hi]
are all greater than nums[p]
. Then, we recursively find new pivots in nums[lo..p-1]
and nums[p+1..hi]
. Eventually, the entire array is sorted.
The code structure for Quick Sort is as follows:
void sort(int[] nums, int lo, int hi) {
// ****** pre-order traversal position ******
// construct the partition point p by swapping elements
int p = partition(nums, lo, hi);
// ************************
sort(nums, lo, p - 1);
sort(nums, p + 1, hi);
}
void sort(vector<int>& nums, int lo, int hi) {
// ****** Preorder traversal position ******
// construct the partition point p by swapping elements
int p = partition(nums, lo, hi);
// ************************
sort(nums, lo, p - 1);
sort(nums, p + 1, hi);
}
def sort(nums: list, lo: int, hi: int):
if lo >= hi:
return
# ****** pre-order traversal position ******
# construct the partition point p by swapping elements
p = partition(nums, lo, hi)
# ************************
sort(nums, lo, p - 1)
sort(nums, p + 1, hi)
func sort(nums []int, lo int, hi int) {
// ****** Preorder traversal position ******
// Construct the partition point p by swapping elements
p := partition(nums, lo, hi)
// ************************
sort(nums, lo, p - 1)
sort(nums, p + 1, hi)
}
var sort = function(nums, lo, hi) {
// ****** Preorder traversal position ******
// construct the partition point p by swapping elements
var p = partition(nums, lo, hi);
// ************************
sort(nums, lo, p - 1);
sort(nums, p + 1, hi);
}
First, construct the pivot point, then construct pivot points for the left and right subarrays. Doesn't this resemble a preorder traversal of a binary tree?
Now, let's talk about the logic of merge sort. To sort nums[lo..hi]
, we first sort nums[lo..mid]
, then sort nums[mid+1..hi]
, and finally merge these two sorted subarrays. The entire array will then be sorted.
The framework for merge sort is as follows:
// Definition: sort nums[lo..hi]
void sort(int[] nums, int lo, int hi) {
int mid = (lo + hi) / 2;
// sort nums[lo..mid]
sort(nums, lo, mid);
// sort nums[mid+1..hi]
sort(nums, mid + 1, hi);
// ****** Post-order position ******
// merge nums[lo..mid] and nums[mid+1..hi]
merge(nums, lo, mid, hi);
// *********************
}
// Definition: sort nums[lo..hi]
void sort(vector<int>& nums, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
// sort nums[lo..mid]
sort(nums, lo, mid);
// sort nums[mid+1..hi]
sort(nums, mid + 1, hi);
// ****** Post-order position ******
// merge nums[lo..mid] and nums[mid+1..hi]
merge(nums, lo, mid, hi);
// *********************
}
def sort(nums: List[int], lo: int, hi: int) -> None:
# definition: sort nums[lo..hi]
mid = (lo + hi) // 2
# sort nums[lo..mid]
sort(nums, lo, mid)
# sort nums[mid+1..hi]
sort(nums, mid + 1, hi)
# ****** post-order position ******
# merge nums[lo..mid] and nums[mid+1..hi]
merge(nums, lo, mid, hi)
# *********************
// definition: sort nums[lo..hi]
func sort(nums []int, lo int, hi int) {
mid := (lo + hi) / 2
// sort nums[lo..mid]
sort(nums, lo, mid)
// sort nums[mid+1..hi]
sort(nums, mid + 1, hi)
// ****** post-order position ******
// merge nums[lo..mid] and nums[mid+1..hi]
merge(nums, lo, mid, hi)
// *********************
}
var sort = function(nums, lo, hi) {
// definition: sort nums[lo..hi]
var mid = Math.floor((lo + hi) / 2);
// sort nums[lo..mid]
sort(nums, lo, mid);
// sort nums[mid+1..hi]
sort(nums, mid + 1, hi);
// ****** postorder position ******
// merge nums[lo..mid] and nums[mid+1..hi]
merge(nums, lo, mid, hi);
// *********************
}
First, sort the left and right subarrays, then merge them (similar to the logic of merging sorted linked lists). Doesn't this resemble the post-order traversal framework of a binary tree? Moreover, isn't this the famed divide-and-conquer algorithm? It's just that simple.
If you can instantly see through these sorting algorithms, do you still need to memorize these classic algorithms? No. You can effortlessly extend algorithms from the binary tree traversal framework.
All this is to say that the algorithmic concepts of binary trees are widely applicable. In fact, as long as recursion is involved, it can often be abstracted into a binary tree problem.
Next, we'll start with pre-order, in-order, and post-order traversals of binary trees to help you deeply understand the charm of this data structure.
In-Depth Understanding of Pre-order, In-order, and Post-order Traversals
Let me present you with a few questions to ponder for 30 seconds:
- What is your understanding of pre-order, in-order, and post-order traversals of binary trees? Are they just three different orders of lists?
- Please analyze, what is special about post-order traversal?
- Please analyze, why doesn't a multi-way tree have an in-order traversal?
If you can't answer these, it means your understanding of pre-order, in-order, and post-order traversal is limited to textbooks. But don't worry, I'll explain my view of these traversals through analogies.
First, let's review the binary tree recursive traversal framework mentioned in DFS/BFS Traversal of Binary Trees:
void traverse(TreeNode root) {
if (root == null) {
return;
}
// pre-order position
traverse(root.left);
// in-order position
traverse(root.right);
// post-order position
}
void traverse(TreeNode* root) {
if (root == nullptr) {
return;
}
// pre-order position
traverse(root->left);
// in-order position
traverse(root->right);
// post-order position
}
def traverse(root):
if root is None:
return
# pre-order position
traverse(root.left)
# in-order position
traverse(root.right)
# post-order position
func traverse(root *TreeNode) {
if root == nil {
return
}
// pre-order position
traverse(root.Left)
// in-order position
traverse(root.Right)
// post-order position
}
var traverse = function(root) {
if (root == null) {
return;
}
// pre-order position
traverse(root.left);
// in-order position
traverse(root.right);
// post-order position
};
Let's put aside the terms like pre-order, in-order, and post-order for now. Just by looking at the traverse
function, what do you think it does?
In fact, it is simply a function that traverses all the nodes of a binary tree, not fundamentally different from how you traverse an array or a linked list:
// iterate through the array
void traverse(int[] arr) {
for (int i = 0; i < arr.length; i++) {
}
}
// recursively traverse the array
void traverse(int[] arr, int i) {
if (i == arr.length) {
return;
}
// pre-order position
traverse(arr, i + 1);
// post-order position
}
// iterate through the singly linked list
void traverse(ListNode head) {
for (ListNode p = head; p != null; p = p.next) {
}
}
// recursively traverse the singly linked list
void traverse(ListNode head) {
if (head == null) {
return;
}
// pre-order position
traverse(head.next);
// post-order position
}
// iterative traversal of the array
void traverse(vector<int>& arr) {
for (int i = 0; i < arr.size(); i++) {
}
}
// recursive traversal of the array
void traverse(vector<int>& arr, int i) {
if (i == arr.size()) {
return;
}
// pre-order position
traverse(arr, i + 1);
// post-order position
}
struct ListNode {
int val;
ListNode *next;
};
// iterative traversal of the singly linked list
void traverse(ListNode* head) {
for (ListNode* p = head; p != nullptr; p = p->next) {
}
}
// recursive traversal of the singly linked list
void traverse(ListNode* head) {
if (head == nullptr) {
return;
}
// pre-order position
traverse(head->next);
// post-order position
}
# iterate through the array
def traverse(arr: List[int]) -> None:
for i in range(len(arr)):
pass
# recursively traverse the array
def traverse_recursive(arr: List[int], i: int) -> None:
if i == len(arr):
return
# pre-order position
traverse_recursive(arr, i + 1)
# post-order position
# iterate through the singly linked list
def traverse_linked_list(head: ListNode) -> None:
p = head
while p:
p = p.next
# recursively traverse the singly linked list
def traverse_linked_list_recursive(head: ListNode) -> None:
if not head:
return
# pre-order position
traverse_linked_list_recursive(head.next)
# post-order position
// iterate through the array
func traverse(arr []int) {
for i := 0; i < len(arr); i++ {
}
}
// recursively traverse the array
func traverse(arr []int, i int) {
if i == len(arr) {
return;
}
// pre-order position
traverse(arr, i + 1)
// post-order position
}
// iterate through the singly linked list
func traverse(head *ListNode) {
for p := head; p != nil; p = p.Next {
}
}
// recursively traverse the singly linked list
func traverse(head *ListNode) {
if head == nil {
return;
}
// pre-order position
traverse(head.Next)
// post-order position
}
// iterate through the array
var traverse = function(arr) {
for (var i = 0; i < arr.length; i++) {
}
}
// recursively traverse the array
var traverseRecursive = function(arr, i) {
if (i == arr.length) {
return;
}
// pre-order position
traverseRecursive(arr, i + 1);
// post-order position
}
// iterate through the singly linked list
var traverseList = function(head) {
for (var p = head; p != null; p = p.next) {
}
}
// recursively traverse the singly linked list
var traverseListRecursive = function(head) {
if (head == null) {
return;
}
// pre-order position
traverseListRecursive(head.next);
// post-order position
}
Traversal of singly linked lists and arrays can be done iteratively or recursively. A binary tree is essentially a binary linked list, and it's not feasible to easily convert it into a for-loop iteration. Therefore, when traversing a binary tree, we typically use recursion.
You may have noticed that any recursive traversal can have a pre-order and a post-order position, occurring before and after the recursion, respectively.
The so-called pre-order position is when you first enter a node (or element), and the post-order position is when you are about to leave a node (or element). Depending on where you place your code, the timing of its execution will differ:
For instance, if you are asked to print all the nodes' values of a singly linked list in reverse order, how would you do it?
There are many ways to implement this, but if you have a deep understanding of recursion, you can use the post-order position to achieve this:
// recursively traverse a singly linked list and print the elements in reverse order
void traverse(ListNode head) {
if (head == null) {
return;
}
traverse(head.next);
// post-order position
print(head.val);
}
// recursively traverse the singly linked list and print elements in reverse order
void traverse(ListNode* head) {
if (head == nullptr) {
return;
}
traverse(head->next);
// post-order position
cout << head->val << endl;
}
# recursively traverse a singly linked list and print the elements in reverse order
def traverse(head):
if head is None:
return
traverse(head.next)
# post-order position
print(head.val)
// recursively traverse the singly linked list and print the elements in reverse order
func traverse(head *ListNode) {
if head == nil {
return
}
traverse(head.Next)
// post-order position
fmt.Println(head.Val)
}
// Recursively traverse the singly linked list and print the elements in reverse order
var traverse = function(head) {
if (head == null) {
return;
}
traverse(head.next);
// postorder position
console.log(head.val);
};
Referring to the image above, you should understand why this code can print a singly linked list in reverse order. Essentially, it uses the recursion stack to achieve the effect of reverse traversal.
The same concept applies to binary trees, but with an additional in-order position.
Textbooks typically ask for the results of pre-order, in-order, and post-order traversals. Therefore, someone who has only taken a university data structures course might think that these traversals of a binary tree correspond to three different List<Integer>
sequences.
However, I want to emphasize that pre-order, in-order, and post-order represent three specific time points during the traversal of each node in a binary tree, not just three lists in different orders:
- Pre-order code executes as soon as you enter a binary tree node.
- Post-order code executes just before you leave a binary tree node.
- In-order code executes after the left subtree of a binary tree node has been completely traversed and just before starting to traverse the right subtree.
Notice my choice of words; I consistently refer to pre-order, in-order, and post-order "positions" to distinguish them from the commonly mentioned "traversals": you can write code at the pre-order position to add elements to a list, resulting in a pre-order traversal outcome. However, it doesn't mean you can't write more complex code to accomplish more sophisticated tasks.
Illustrated, the pre-order, in-order, and post-order positions on a binary tree look like this:
You can see that each node has a "unique" pre-order, in-order, and post-order position, which is why I say that these traversals are three specific time points for processing each node during a binary tree traversal.
This also explains why multi-branch trees lack an in-order position. In binary trees, each node switches from the left subtree to the right subtree only once, while nodes in multi-branch trees may have many children and switch subtrees multiple times for traversal, resulting in no "unique" in-order position.
All of this foundational information aims to help you build a correct understanding of binary trees. You will realize that:
All binary tree problems are about injecting clever logic at pre-order, in-order, or post-order positions to achieve your goals. You only need to consider what each node should do individually. The rest is handled by the binary tree traversal framework, and the recursion will perform the same operation on all nodes.
You can also observe that Graph Theory Basics extends the binary tree traversal framework to graphs, implementing various classic graph algorithms based on traversal. However, that is a topic for another discussion, which we will not delve into here.
Two Approaches to Problem Solving
In the previous article My Learnings on Algorithms, it was mentioned:
Recursive solutions for binary tree problems can be classified into two approaches. The first approach is to traverse the binary tree to get the answer, and the second is to solve the problem by breaking it down into subproblems. These two approaches correspond to the Core Framework of Backtracking and the Core Framework of Dynamic Programming respectively.
Tips
Here is my habit regarding function naming: When solving binary tree problems using the traversal approach, the function signature is generally void traverse(...)
, without a return value. The result is calculated by updating external variables. On the other hand, when solving problems by decomposition, the function name is determined by its specific functionality and usually has a return value, which is the result of the subproblem.
Correspondingly, you will notice that the function signatures given in the Core Framework of Backtracking are generally void backtrack(...)
with no return value, whereas in the Core Framework of Dynamic Programming, the function signatures are dp
functions with return values. This illustrates the intricate connections between these and binary trees.
Although there is no strict requirement for function naming, I recommend following this style to better highlight the function's purpose and the problem-solving mindset. It helps in understanding and applying the concepts.
At that time, I used the problem of finding the maximum depth of a binary tree as an example. The focus was on comparing these two approaches with dynamic programming and backtracking algorithms. In this article, the focus is on analyzing how these two approaches solve binary tree problems.
LeetCode Problem 104, "Maximum Depth of Binary Tree," is about finding the maximum depth, which is the number of nodes along the longest path from the root node to the "farthest" leaf node. For example, given this binary tree, the algorithm should return 3:
What is your approach to solving this problem? Clearly, by traversing the binary tree and using an external variable to record the depth of each node, you can get the maximum depth by taking the maximum value. This is the approach of traversing the binary tree to calculate the answer.
The solution code is as follows:
class Solution {
// record the maximum depth
int res = 0;
// record the depth of the traversed node
int depth = 0;
public int maxDepth(TreeNode root) {
traverse(root);
return res;
}
// binary tree traversal framework
void traverse(TreeNode root) {
if (root == null) {
return;
}
// pre-order position
depth++;
if (root.left == null && root.right == null) {
// reached a leaf node, update the maximum depth
res = Math.max(res, depth);
}
traverse(root.left);
traverse(root.right);
// post-order position
depth--;
}
}
class Solution {
public:
// record the maximum depth
int res = 0;
// record the depth of the current node
int depth = 0;
// main function
int maxDepth(TreeNode* root) {
traverse(root);
return res;
}
// binary tree traversal framework
void traverse(TreeNode* root) {
if (root == nullptr) {
return;
}
// pre-order position
depth++;
if (root->left == nullptr && root->right == nullptr) {
// reached a leaf node, update the maximum depth
res = std::max(res, depth);
}
traverse(root->left);
traverse(root->right);
// post-order position
depth--;
}
};
class Solution:
def __init__(self):
# record the maximum depth
self.res = 0
# record the depth of the traversed node
self.depth = 0
def maxDepth(self, root: TreeNode) -> int:
self.traverse(root)
return self.res
# binary tree traversal framework
def traverse(self, root: TreeNode) -> None:
if root is None:
return
# pre-order position
self.depth += 1
if root.left is None and root.right is None:
# reached a leaf node, update the maximum depth
self.res = max(self.res, self.depth)
self.traverse(root.left)
self.traverse(root.right)
# post-order position
self.depth -= 1
// main function
func maxDepth(root *TreeNode) int {
// record the maximum depth
var res int = 0
// record the depth of the traversed node
var depth int = 0;
// binary tree traversal framework
var traverse func(root *TreeNode)
traverse = func(root *TreeNode) {
if (root == nil) {
return
}
// pre-order position
depth++
if (root.Left == nil && root.Right == nil) {
// reached leaf node, update maximum depth
res = max(res, depth)
}
traverse(root.Left)
traverse(root.Right)
// post-order position
depth--
}
traverse(root)
return res
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
// main function
var maxDepth = function(root) {
// record the maximum depth
var res = 0;
// record the depth of the current node
var depth = 0;
// binary tree traversal framework
var traverse = function(root) {
if (root == null) {
return;
}
// pre-order position
depth++;
if (root.left == null && root.right == null) {
// reached a leaf node, update the maximum depth
res = Math.max(res, depth);
}
traverse(root.left);
traverse(root.right);
// post-order position
depth--;
};
traverse(root);
return res;
};
This solution should be easy to understand, but why do we need to increase depth
at the pre-order position and decrease depth
at the post-order position?
As mentioned earlier, the pre-order position is when entering a node, and the post-order position is when leaving a node. The depth
records the current depth of the recursive node. You can think of traverse
as a pointer moving through the binary tree, so it naturally needs to be maintained this way.
As for updating res
, you can place it in the pre-order, in-order, or post-order position, as long as it happens after entering the node and before leaving the node (i.e., after incrementing depth
and before decrementing it).
Of course, it's also easy to see that the maximum depth of a binary tree can be derived from the maximum depth of its subtrees. This is the idea of decomposing the problem to calculate the answer.
The solution code is as follows:
class Solution {
// Definition: Given the root node, return the maximum depth of the binary tree
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
// Use the definition to calculate the maximum depth of the left and right subtrees
int leftMax = maxDepth(root.left);
int rightMax = maxDepth(root.right);
// The maximum depth of the entire tree is
// the maximum of the left and right subtree
// plus one for the root node itself
int res = Math.max(leftMax, rightMax) + 1;
return res;
}
}
class Solution {
public:
// Definition: input the root node and return the maximum depth of this binary tree
int maxDepth(TreeNode* root) {
if (root == nullptr) {
return 0;
}
// Using the definition, calculate the maximum depth of the left and right subtrees
int leftMax = maxDepth(root->left);
int rightMax = maxDepth(root->right);
// The maximum depth of the entire tree is equal
// to the maximum depth of the left and right
// and then add the root node itself
int res = std::max(leftMax, rightMax) + 1;
return res;
}
};
class Solution:
# Definition: Given the root node, return the maximum depth of this binary tree
def maxDepth(self, root: TreeNode) -> int:
if root is None:
return 0
# Using the definition, calculate the maximum depth of the left and right subtrees
leftMax = self.maxDepth(root.left)
rightMax = self.maxDepth(root.right)
# The maximum depth of the entire tree is
# the maximum depth of the left and right
# plus the root node itself
res = max(leftMax, rightMax) + 1
return res
// Definition: input the root node, return the maximum depth of this binary tree
func maxDepth(root *TreeNode) int {
if root == nil {
return 0
}
// Using the definition, calculate the maximum depth of the left and right subtrees
leftMax := maxDepth(root.Left)
rightMax := maxDepth(root.Right)
// The maximum depth of the entire tree is equal to
// the maximum depth of the left and right subtrees,
// then add the root node itself
res := max(leftMax, rightMax) + 1
return res
}
func max(a int, b int) int {
if a > b {
return a
}
return b
}
// definition: input the root node, return the maximum depth of this binary tree
var maxDepth = function(root) {
if (root === null) {
return 0;
}
// use the definition to calculate the maximum depth of the left and right subtrees
var leftMax = maxDepth(root.left);
var rightMax = maxDepth(root.right);
// the maximum depth of the entire tree is equal to
// the maximum depth of the left and right subtrees,
// then add the root node itself
var res = Math.max(leftMax, rightMax) + 1;
return res;
};
As long as you understand the definition of the recursive function, this solution is not difficult to grasp. But why is the main code logic concentrated in the post-order position?
The core of this correct thought process is that you can indeed deduce the depth of the original tree from the maximum depth of the subtrees. Therefore, you should first use the recursive function definition to calculate the maximum depth of the left and right subtrees, and then deduce the maximum depth of the original tree. Naturally, the main logic is placed in the post-order position.
If you understand the two approaches to the maximum depth problem, then let's revisit the basic pre-order, in-order, and post-order traversal of binary trees. For example, in LeetCode problem 144 "Binary Tree Preorder Traversal," you are asked to calculate the pre-order traversal result.
The familiar solution is to use the "traversal" approach, which should be straightforward:
class Solution {
// store the result of the preorder traversal
List<Integer> res = new LinkedList<>();
// return the preorder traversal result
public List<Integer> preorderTraversal(TreeNode root) {
traverse(root);
return res;
}
// binary tree traversal function
void traverse(TreeNode root) {
if (root == null) {
return;
}
// preorder position
res.add(root.val);
traverse(root.left);
traverse(root.right);
}
}
class Solution {
public:
// store the result of the preorder traversal
vector<int> res;
// return the preorder traversal result
vector<int> preorderTraversal(TreeNode* root) {
traverse(root);
return res;
}
// binary tree traversal function
void traverse(TreeNode* root) {
if (root == nullptr) {
return;
}
// preorder position
res.push_back(root->val);
traverse(root->left);
traverse(root->right);
}
};
class Solution:
def __init__(self):
self.res = []
# return the result of preorder traversal
def preorderTraversal(self, root: TreeNode) -> List[int]:
self.traverse(root)
return self.res
# binary tree traversal function
def traverse(self, root: TreeNode):
if root is None:
return
# preorder position
self.res.append(root.val)
self.traverse(root.left)
self.traverse(root.right)
// preorderTraverse returns the preorder traversal result
func preorderTraversal(root *TreeNode) []int {
// store the result of the preorder traversal
var res []int
// binary tree traversal function
var traverse func(root *TreeNode)
traverse = func(root *TreeNode) {
if root == nil {
return
}
// preorder position
res = append(res, root.Val)
traverse(root.Left)
traverse(root.Right)
}
traverse(root)
return res
}
// return the preorder traversal result
var preorderTraversal = function(root) {
// store the result of the preorder traversal
var res = [];
// binary tree traversal function
var traverse = function(root) {
if (root == null) {
return;
}
// preorder position
res.push(root.val);
traverse(root.left);
traverse(root.right);
};
traverse(root);
return res;
}
But can you calculate the result of a preorder traversal using the "problem decomposition" approach?
In other words, without using auxiliary functions like traverse
or any external variables, can you solve it recursively using only the provided preorderTraverse
function?
We know that the characteristic of preorder traversal is that the root node's value comes first, followed by the preorder traversal of the left subtree, and finally the preorder traversal of the right subtree:
This allows us to decompose the problem: The preorder traversal result of a binary tree = Root node + Preorder traversal of the left subtree + Preorder traversal of the right subtree.
Therefore, you can implement the preorder traversal algorithm like this:
class Solution {
// Definition: Given the root node of a binary
// tree, return the preorder traversal result of
List<Integer> preorderTraversal(TreeNode root) {
List<Integer> res = new LinkedList<>();
if (root == null) {
return res;
}
// The result of preorder traversal, root.val is first
res.add(root.val);
// Using the function definition, followed by
// the preorder traversal result of the left
res.addAll(preorderTraversal(root.left));
// Using the function definition, finally followed
// by the preorder traversal result of the right
res.addAll(preorderTraversal(root.right));
return res;
}
}
class Solution {
public:
// Definition: Given the root node of a binary
// tree, return the preorder traversal result of
vector<int> preorderTraversal(TreeNode* root) {
vector<int> res;
if (root == nullptr) {
return res;
}
// The result of preorder traversal, root->val is the first element
res.push_back(root->val);
// Using the function definition, followed by
// the preorder traversal result of the left
vector<int> left = preorderTraversal(root->left);
res.insert(res.end(), left.begin(), left.end());
// Using the function definition, followed by
// the preorder traversal result of the right
vector<int> right = preorderTraversal(root->right);
res.insert(res.end(), right.begin(), right.end());
return res;
}
};
class Solution:
# Definition: Given the root of a binary tree, return the preorder traversal of this tree
def preorderTraversal(self, root):
res = []
if root == None:
return res
# In the preorder traversal result, root.val is the first
res.append(root.val)
# Use the function definition to append
# the preorder traversal result of the left
res.extend(self.preorderTraversal(root.left))
# Use the function definition to append
# the preorder traversal result of the
res.extend(self.preorderTraversal(root.right))
return res
// Definition: Given the root of a binary tree,
// return the preorder traversal result of this
func preorderTraversal(root *TreeNode) []int {
var res []int
if root == nil {
return res
}
// In preorder traversal, root.Val is the first element.
res = append(res, root.Val)
// According to the function definition, append the
// preorder traversal result of the left subtree.
res = append(res, preorderTraversal(root.Left)...)
// According to the function definition, append the
// preorder traversal result of the right subtree.
res = append(res, preorderTraversal(root.Right)...)
return res
}
// Definition: Given the root node of a binary tree,
// return the preorder traversal result of this tree
var preorderTraversal = function(root) {
var res = [];
if (root == null) {
return res;
}
// The result of preorder traversal, root.val is the first
res.push(root.val);
// Using function definition, followed by the preorder traversal result of the left subtree
res = res.concat(preorderTraversal(root.left));
// Using function definition, finally followed by
// the preorder traversal result of the right
res = res.concat(preorderTraversal(root.right));
return res;
}
Inorder and postorder traversals are similar; you just need to place add(root.val)
at the corresponding position for inorder and postorder traversals.
This solution is concise, but why is it not commonly seen?
One reason is the complexity of this algorithm is hard to manage, and it heavily depends on language features.
In Java, whether using ArrayList or LinkedList, the complexity of the addAll
method is O(N), so the overall worst-case time complexity can reach O(N^2). This can be avoided if you implement an addAll
method with O(1) complexity yourself. This is achievable with linked lists, as multiple lists can be connected with simple pointer operations.
Of course, the main reason is that textbooks never teach it this way...
The above mentioned a couple of simple examples, but there are many binary tree problems that can be solved using both approaches. It requires practice and thought on your part, not just sticking to one familiar method.
In summary, the general thought process when encountering a binary tree problem is:
1. Can the answer be obtained by traversing the binary tree once? If so, use a traverse
function with external variables.
2. Can you define a recursive function to derive the answer to the original problem from the answers to subproblems (subtrees)? If so, write this recursive function's definition and make full use of its return value.
3. Regardless of the approach, understand what each node of the binary tree needs to do and when it should be done (preorder, inorder, postorder).
Our site’s Special Binary Tree Recursion Practice lists over 100 binary tree exercises, guiding you step-by-step using the above two thought processes to help you fully master recursive thinking and better understand advanced algorithms.
The Special Nature of Postorder Position
Before discussing postorder, let's briefly touch on preorder and inorder.
Preorder itself doesn't have any special properties. The reason why many problems seem to be solved at the preorder position is that we habitually write code that is insensitive to the preorder, inorder, and postorder positions in the preorder position.
Inorder is mainly used in BST scenarios. You can entirely think of the inorder traversal of a BST as traversing a sorted array.
Key Points
Observe carefully: the code at preorder, inorder, and postorder positions has increasing capabilities.
Code at the preorder position can only access data passed from the parent node via function parameters.
Code at the inorder position can access not only parameter data but also data returned from the left subtree via function return values.
Code at the postorder position is the most powerful. It can access parameter data and data returned from both the left and right subtrees via function return values.
Therefore, in some cases, moving code to the postorder position is the most efficient; some tasks can only be done with code in the postorder position.
Let's look at some specific examples to feel the difference in their capabilities. Given a binary tree, here are two simple questions:
- If the root node is considered level 1, how do you print the level number of each node?
- How do you print the number of nodes in the left and right subtrees of each node?
The code for the first question can be written like this:
// Binary tree traversal function
void traverse(TreeNode root, int level) {
if (root == null) {
return;
}
// Pre-order position
printf("Node %s at level %d", root.val, level);
traverse(root.left, level + 1);
traverse(root.right, level + 1);
}
// Call it like this
traverse(root, 1);
// Binary tree traversal function
void traverse(TreeNode* root, int level) {
if (root == nullptr) {
return;
}
// Pre-order position
printf("Node %d at level %d", root->val, level);
traverse(root->left, level + 1);
traverse(root->right, level + 1);
}
// Call it like this
traverse(root, 1);
# binary tree traversal function
def traverse(root, level):
if root is None:
return
# pre-order position
print(f"Node {root.val} at level {level}")
traverse(root.left, level + 1)
traverse(root.right, level + 1)
# call it like this
traverse(root, 1)
// binary tree traversal function
func traverse(root *TreeNode, level int) {
if root == nil {
return
}
// pre-order position
fmt.Printf("Node %v at level %v\n", root.Val, level)
traverse(root.Left, level + 1)
traverse(root.Right, level + 1)
}
// call it like this
traverse(root, 1)
// binary tree traversal function
var traverse = function(root, level) {
if (root == null) {
return;
}
// pre-order position
console.log("Node " + root.val + " at level " + level);
traverse(root.left, level + 1);
traverse(root.right, level + 1);
}
// call it like this
traverse(root, 1);
The second problem can be coded like this:
// Definition: Given a binary tree, return the total number of nodes in the tree
int count(TreeNode root) {
if (root == null) {
return 0;
}
int leftCount = count(root.left);
int rightCount = count(root.right);
// Post-order position
printf("节点 %s 的左子树有 %d 个节点,右子树有 %d 个节点",
root, leftCount, rightCount);
return leftCount + rightCount + 1;
}
// Definition: Given a binary tree, return the total number of nodes in the tree
int count(TreeNode* root) {
if (root == nullptr) {
return 0;
}
int leftCount = count(root->left);
int rightCount = count(root->right);
// Post-order position
printf("节点 %p 的左子树有 %d 个节点,右子树有 %d 个节点",
root, leftCount, rightCount);
return leftCount + rightCount + 1;
}
# Definition: Given a binary tree, return the total number of nodes in this binary tree
def count(root):
if root is None:
return 0
leftCount = count(root.left)
rightCount = count(root.right)
# postorder position
print(f"节点 {root} 的左子树有 {leftCount} 个节点,右子树有 {rightCount} 个节点")
return leftCount + rightCount + 1
// Definition: Given a binary tree, return the total number of nodes in the tree
func count(root *TreeNode) int {
if root == nil {
return 0
}
leftCount := count(root.Left)
rightCount := count(root.Right)
// post-order position
fmt.Printf("节点 %v 的左子树有 %d 个节点,右子树有 %d 个节点\n",
root, leftCount, rightCount)
return leftCount + rightCount + 1
}
// Definition: given a binary tree, return the total number of nodes in this binary tree
var count = function(root) {
if (root == null) {
return 0;
}
var leftCount = count(root.left);
var rightCount = count(root.right);
// post-order position
console.log(`节点 ${root} 的左子树有 ${leftCount} 个节点,右子树有 ${rightCount} 个节点`);
return leftCount + rightCount + 1;
};
The Fundamental Difference Between These Two Problems
The level of a node can be recorded as you traverse from the root node, passing it through the parameters of a recursive function. However, to determine the number of nodes in a subtree rooted at a specific node, you must first traverse the entire subtree to count them and then obtain the result through the return value of the recursive function.
By combining these two simple problems, observe the characteristics of the postorder position. Only the postorder position can use return values to gather information about the subtree.
In other words, if you find a problem related to subtrees, it is likely that you need to set a proper function definition and return value, and write the code at the postorder position.
Next, let's see how the postorder position plays a role in actual problems by briefly discussing LeetCode problem 543, "Diameter of Binary Tree," which requires you to calculate the longest diameter of a binary tree.
The "diameter" of a binary tree is the length of the path between any two nodes. The longest "diameter" does not necessarily pass through the root node. For example, in the binary tree below:
Its longest diameter is 3, which can be the length of paths like [4,2,1,3]
, [4,2,1,9]
, or [5,2,1,3]
.
The key to solving this problem is that the "diameter" length of each binary tree is the sum of the maximum depths of the left and right subtrees of a node.
To find the longest "diameter" in the entire tree, a straightforward approach is to traverse every node in the tree, calculate the "diameter" at each node by summing the maximum depths of its left and right subtrees, and finally determine the maximum "diameter" among them.
We have previously implemented the maximum depth algorithm, and based on this idea, we can write the following code:
class Solution {
// record the length of the maximum diameter
int maxDiameter = 0;
public int diameterOfBinaryTree(TreeNode root) {
// calculate the diameter for each node and find the maximum diameter
traverse(root);
return maxDiameter;
}
// traverse the binary tree
void traverse(TreeNode root) {
if (root == null) {
return;
}
// calculate the diameter for each node
int leftMax = maxDepth(root.left);
int rightMax = maxDepth(root.right);
int myDiameter = leftMax + rightMax;
// update the global maximum diameter
maxDiameter = Math.max(maxDiameter, myDiameter);
traverse(root.left);
traverse(root.right);
}
// calculate the maximum depth of the binary tree
int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftMax = maxDepth(root.left);
int rightMax = maxDepth(root.right);
return 1 + Math.max(leftMax, rightMax);
}
}
class Solution {
public:
// record the length of the maximum diameter
int maxDiameter = 0;
int diameterOfBinaryTree(TreeNode* root) {
// calculate the diameter for each node and find the maximum diameter
traverse(root);
return maxDiameter;
}
private:
// traverse the binary tree
void traverse(TreeNode* root) {
if (root == nullptr) {
return;
}
// calculate the diameter for each node
int leftMax = maxDepth(root->left);
int rightMax = maxDepth(root->right);
int myDiameter = leftMax + rightMax;
// update the global maximum diameter
maxDiameter = max(maxDiameter, myDiameter);
traverse(root->left);
traverse(root->right);
}
// calculate the maximum depth of the binary tree
int maxDepth(TreeNode* root) {
if (root == nullptr) {
return 0;
}
int leftMax = maxDepth(root->left);
int rightMax = maxDepth(root->right);
return 1 + max(leftMax, rightMax);
}
};
class Solution:
def __init__(self):
# record the length of the maximum diameter
self.maxDiameter = 0
def diameterOfBinaryTree(self, root):
# calculate the diameter for each node, find the maximum diameter
self.traverse(root)
return self.maxDiameter
# traverse the binary tree
def traverse(self, root):
if root is None:
return
# calculate the diameter for each node
leftMax = self.maxDepth(root.left)
rightMax = self.maxDepth(root.right)
myDiameter = leftMax + rightMax
# update the global maximum diameter
self.maxDiameter = max(self.maxDiameter, myDiameter)
self.traverse(root.left)
self.traverse(root.right)
# calculate the maximum depth of the binary tree
def maxDepth(self, root):
if root is None:
return 0
leftMax = self.maxDepth(root.left)
rightMax = self.maxDepth(root.right)
return 1 + max(leftMax, rightMax)
// record the length of the maximum diameter
func diameterOfBinaryTree(root *TreeNode) int {
maxDiameter := 0
// traverse the binary tree
var traverse func(root *TreeNode)
traverse = func(root *TreeNode) {
if root == nil {
return
}
// calculate the diameter for each node
leftMax := maxDepth(root.Left)
rightMax := maxDepth(root.Right)
myDiameter := leftMax + rightMax
// update the global maximum diameter
maxDiameter = max(maxDiameter, myDiameter)
traverse(root.Left)
traverse(root.Right)
}
traverse(root)
return maxDiameter
}
// calculate the maximum depth of the binary tree
func maxDepth(root *TreeNode) int {
if root == nil {
return 0
}
leftMax := maxDepth(root.Left)
rightMax := maxDepth(root.Right)
return 1 + max(leftMax, rightMax)
}
// helper function to find the maximum of two numbers
func max(a, b int) int {
if a > b {
return a
}
return b
}
var diameterOfBinaryTree = function(root) {
// record the length of the maximum diameter
let maxDiameter = 0;
// calculate the maximum depth of the binary tree
const maxDepth = function(root) {
if (root === null) {
return 0;
}
let leftMax = maxDepth(root.left);
let rightMax = maxDepth(root.right);
return 1 + Math.max(leftMax, rightMax);
};
// traverse the binary tree
const traverse = function(root) {
if (root === null) {
return;
}
// calculate the diameter for each node
let leftMax = maxDepth(root.left);
let rightMax = maxDepth(root.right);
let myDiameter = leftMax + rightMax;
// update the global maximum diameter
maxDiameter = Math.max(maxDiameter, myDiameter);
traverse(root.left);
traverse(root.right);
};
traverse(root);
return maxDiameter;
};
This solution is correct, but it takes a long time to run. The reason is obvious: the traverse
function calls the recursive function maxDepth
for each node, and maxDepth
needs to traverse all nodes of the subtree. Therefore, the worst-case time complexity is O(N^2).
This situation is what we discussed earlier: the pre-order position cannot obtain subtree information, so each node has to call the maxDepth
function to calculate the depth of the subtree.
So how can we optimize it? We should put the logic for calculating the "diameter" in the post-order position. Specifically, it should be placed in the post-order position of maxDepth
, because the post-order position of maxDepth
knows the maximum depth of the left and right subtrees.
Therefore, by slightly modifying the code logic, we can get a better solution:
class Solution {
// record the length of the maximum diameter
int maxDiameter = 0;
public int diameterOfBinaryTree(TreeNode root) {
maxDepth(root);
return maxDiameter;
}
int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftMax = maxDepth(root.left);
int rightMax = maxDepth(root.right);
// post-order position, calculate the maximum diameter by the way
int myDiameter = leftMax + rightMax;
maxDiameter = Math.max(maxDiameter, myDiameter);
return 1 + Math.max(leftMax, rightMax);
}
}
class Solution {
// record the length of the maximum diameter
int maxDiameter = 0;
public:
int diameterOfBinaryTree(TreeNode* root) {
maxDepth(root);
return maxDiameter;
}
int maxDepth(TreeNode* root) {
if (root == nullptr) {
return 0;
}
int leftMax = maxDepth(root->left);
int rightMax = maxDepth(root->right);
// post-order position, calculate the maximum diameter along the way
int myDiameter = leftMax + rightMax;
maxDiameter = max(maxDiameter, myDiameter);
return 1 + max(leftMax, rightMax);
}
};
class Solution:
def __init__(self):
# record the length of the maximum diameter
self.maxDiameter = 0
def diameterOfBinaryTree(self, root):
self.maxDepth(root)
return self.maxDiameter
def maxDepth(self, root):
if root is None:
return 0
leftMax = self.maxDepth(root.left)
rightMax = self.maxDepth(root.right)
# post-order position, by the way, calculate the maximum diameter
myDiameter = leftMax + rightMax
self.maxDiameter = max(self.maxDiameter, myDiameter)
return 1 + max(leftMax, rightMax)
func diameterOfBinaryTree(root *TreeNode) int {
// record the length of the maximum diameter
maxDiameter := 0
var maxDepth func(root *TreeNode) int
maxDepth = func(root *TreeNode) int {
if root == nil {
return 0
}
leftMax := maxDepth(root.Left)
rightMax := maxDepth(root.Right)
// in post-order position, calculate the maximum diameter
myDiameter := leftMax + rightMax
maxDiameter = max(maxDiameter, myDiameter)
return 1 + max(leftMax, rightMax)
}
maxDepth(root)
return maxDiameter
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
var diameterOfBinaryTree = function(root) {
let maxDiameter = 0;
const maxDepth = function(root) {
if (root === null) {
return 0;
}
let leftMax = maxDepth(root.left);
let rightMax = maxDepth(root.right);
// in post-order position, calculate the maximum diameter
let myDiameter = leftMax + rightMax;
maxDiameter = Math.max(maxDiameter, myDiameter);
return 1 + Math.max(leftMax, rightMax);
}
maxDepth(root);
return maxDiameter;
};
Now, the time complexity is only O(N) for the maxDepth
function.
As mentioned earlier, when dealing with subtree problems, the first thing to think about is setting a return value for the function and then working on it in the post-order position.
Info
Question: Think about it, does a problem that uses post-order traversal follow the "traversal" approach or the "problem decomposition" approach?
Click to see the answer
Problems that utilize the post-order position generally use the "problem decomposition" approach. This is because the current node receives and uses information returned from its subtrees, meaning you've broken down the original problem into subproblems of the current node plus its left and right subtrees.
Conversely, if you find yourself writing a recursive-in-recursive solution like the one at the beginning, it's likely worth reconsidering if post-order traversal can optimize it.
For more exercises that use the post-order position, refer to Hand-holding Guide to Binary Trees (Post-order Section), Hand-holding Guide to Binary Search Trees (Post-order Section), and Intensive Practice: Solving Problems Using Post-order Position.
Understanding the Differences and Connections between Dynamic Programming, Backtracking, and DFS from a Tree's Perspective
Previously, I mentioned that dynamic programming and backtracking are two different approaches to binary tree algorithms. I believe readers who have reached this point agree with me. However, some attentive readers often ask: Your way of thinking is enlightening, but haven't you talked about the DFS algorithm?
Actually, in the article Mastering All Island Problems in One Go, I used the DFS algorithm, but I haven't dedicated an article solely to DFS. This is because DFS and backtracking algorithms are very similar, differing only in details.
What is this detailed difference? It boils down to whether the "make a choice" and "undo a choice" actions are inside or outside the for-loop. In DFS, they are outside, while in backtracking, they are inside.
Why this difference? It still needs to be understood in the context of binary trees. In this section, I'll explain the three classic algorithmic ideas of backtracking, DFS, and dynamic programming, as well as their connections and differences with binary tree algorithms, in one sentence:
Key Points
Dynamic programming, DFS, and backtracking can all be seen as extensions of binary tree problems, but they focus on different aspects:
- Dynamic programming is about problem decomposition (divide and conquer), focusing on the entire "subtree."
- Backtracking is about traversal, focusing on the "branches" between nodes.
- DFS is about traversal, focusing on individual "nodes."
How to understand this? I'll explain each with three examples.
Example One: The Thought Process of Problem Decomposition
First example, given a binary tree, write a count
function using problem decomposition to calculate the total number of nodes in this binary tree. The code is straightforward, as mentioned earlier:
// Definition: input a binary tree, return the total number of nodes in this binary tree
int count(TreeNode root) {
if (root == null) {
return 0;
}
// The current node cares about the total number of nodes in each of its subtrees
// Because the result of the subproblems can be
// used to derive the result of the original
int leftCount = count(root.left);
int rightCount = count(root.right);
// In the postorder position, the total number of nodes in the left and right
// subtrees plus the current node itself is the total number of nodes in the entire
return leftCount + rightCount + 1;
}
// Definition: Given a binary tree, return the total number of nodes in this binary tree
int count(TreeNode* root) {
if (root == nullptr) {
return 0;
}
// The current node cares about the total number of nodes in the two subtrees
// Because the result of the subproblems can derive the result of the original problem
int leftCount = count(root->left);
int rightCount = count(root->right);
// In the post-order position, the number of nodes in the left and
// right subtrees plus itself is the total number of nodes in the entire
return leftCount + rightCount + 1;
}
# Definition: Given a binary tree, return the total number of nodes in the tree
def count(root):
if root is None:
return 0
# The current node is concerned with the total number of nodes in its two subtrees
# Because the result of the subproblems can be
# used to derive the result of the original
leftCount = count(root.left)
rightCount = count(root.right)
# In the post-order position, the total number of nodes in the left and
# right subtrees plus the current node equals the total number of nodes in
return leftCount + rightCount + 1
// Definition: Given a binary tree, return the total number of nodes in the tree
func count(root *TreeNode) int {
if root == nil {
return 0
}
// The current node cares about the total number of nodes in its left and right subtrees
// Because the result of the sub-problems can be
// used to derive the result of the original
leftCount := count(root.Left)
rightCount := count(root.Right)
// In post-order position, the number of nodes in the left and right
// subtrees plus the current node is the total number of nodes in the
return leftCount + rightCount + 1
}
// Definition: Given a binary tree, return the total number of nodes in this binary tree
var count = function(root) {
if (root == null) {
return 0;
}
// The current node cares about the total number of nodes in its two subtrees
// Because the result of the subproblems can be
// used to derive the result of the original
var leftCount = count(root.left);
var rightCount = count(root.right);
// In the post-order position, the number of nodes in the left and
// right subtrees plus itself is the total number of nodes in the entire
return leftCount + rightCount + 1;
}
You see, this is the idea behind breaking down problems using dynamic programming. It always focuses on subproblems with the same structure, which can be likened to "subtrees" in a binary tree.
Let's look at a specific dynamic programming problem. For example, in the Detailed Explanation of Dynamic Programming Framework, we use the Fibonacci sequence as an example. Our focus is on the return values of each subtree:
int fib(int N) {
if (N == 1 || N == 2) return 1;
return fib(N - 1) + fib(N - 2);
}
int fib(int N) {
if (N == 1 || N == 2) return 1;
return fib(N - 1) + fib(N - 2);
}
def fib(N: int) -> int:
if N == 1 or N == 2:
return 1
return fib(N - 1) + fib(N - 2)
func fib(N int) int {
if N == 1 || N == 2 {
return 1
}
return fib(N - 1) + fib(N - 2)
}
var fib = function(N) {
if (N == 1 || N == 2) {
return 1;
}
return fib(N - 1) + fib(N - 2);
}
Example 2: Demonstrating the Concept of Backtracking Algorithm
Second Example, given a binary tree, write a traverse
function using traversal logic that prints the process of traversing this binary tree. Take a look at the code:
void traverse(TreeNode root) {
if (root == null) return;
printf("从节点 %s 进入节点 %s", root, root.left);
traverse(root.left);
printf("从节点 %s 回到节点 %s", root.left, root);
printf("从节点 %s 进入节点 %s", root, root.right);
traverse(root.right);
printf("从节点 %s 回到节点 %s", root.right, root);
}
void traverse(TreeNode* root) {
// If the node is null (indicating it has passed the leaf node), return
if (root == nullptr) return;
// Start from node root and move along the left side
printf("从节点 %s 进入节点 %s", root, root->left);
traverse(root->left);
// Return from the left side of node root
printf("从节点 %s 回到节点 %s", root->left, root);
// Start from node root and move along the right side
printf("从节点 %s 进入节点 %s", root, root->right);
traverse(root->right);
// Return from the right side of node root
printf("从节点 %s 回到节点 %s", root->right, root);
}
def traverse(root):
if root is None:
return
print("从节点 %s 进入节点 %s" %(root, root.left))
traverse(root.left)
print("从节点 %s 回到节点 %s" %(root.left, root))
print("从节点 %s 进入节点 %s" %(root, root.right))
traverse(root.right)
print("从节点 %s 回到节点 %s" %(root.right, root))
func traverse(root *TreeNode) {
if root == nil {
return
}
fmt.Printf("从节点 %v 进入节点 %v\n", root, root.Left)
traverse(root.Left)
fmt.Printf("从节点 %v 回到节点 %v\n", root.Left, root)
fmt.Printf("从节点 %v 进入节点 %v\n", root, root.Right)
traverse(root.Right)
fmt.Printf("从节点 %v 回到节点 %v\n", root.Right, root)
}
var traverse = function(root) {
if (root == null) return;
console.log("从节点 "+ root + " 进入节点 " + root.left);
traverse(root.left);
console.log("从节点 "+ root.left + " 回到节点 " + root);
console.log("从节点 "+ root + " 进入节点 " + root.right);
traverse(root.right);
console.log("从节点 "+ root.right + " 回到节点 " + root);
}
Not hard to understand, right? Okay, now let's advance from binary trees to multi-branch trees. The code is similar:
// Multi-way tree node
class Node {
int val;
Node[] children;
}
void traverse(Node root) {
if (root == null) return;
for (Node child : root.children) {
printf("从节点 %s 进入节点 %s", root, child);
traverse(child);
printf("从节点 %s 回到节点 %s", child, root);
}
}
// Multi-way tree node
class Node {
public:
int val;
std::vector<Node*> children;
};
void traverse(Node* root) {
if (root == NULL) return;
for (Node* child : root->children) {
std::cout << "从节点 " << root->val << " 进入节点 " << child->val << std::endl;
// Enter node from node
traverse(child);
std::cout << "从节点 " << child->val << " 回到节点 " << root->val << std::endl;
// Return to node from node
}
}
# multi-way tree node
class Node:
def __init__(self, val=0, children=None):
self.val = val
self.children = children if children is not None else []
def traverse(root):
if not root: return
for child in root.children:
print(f"从节点 {root} 进入节点 {child}")
# Entering node {child} from node {root}
traverse(child)
print(f"从节点 {child} 回到节点 {root}")
# Returning to node {root} from node {child}
// Multi-way tree node
type Node struct {
val int
children []*Node
}
func traverse(root *Node) {
if root == nil {
return
}
for _, child := range root.children {
fmt.Printf("Enter from node %v to node %v\n", root, child)
traverse(child)
fmt.Printf("Return from node %v to node %v\n", child, root)
}
}
// multi-way tree node
var Node = function() {
this.val = 0;
this.children = [];
}
var traverse = function(root) {
if (root === null) return;
for (var i = 0; i < root.children.length; i++) {
var child = root.children[i];
console.log("从节点 " + root + " 进入节点 " + child);
// entering node from node
traverse(child);
console.log("从节点 " + child + " 回到节点 " + root);
// returning to node from node
}
}
This multi-way tree traversal framework can be extended to the backtracking algorithm framework detailed in Backtracking Algorithm Framework Explained:
// backtracking algorithm framework
void backtrack(...) {
// base case
if (...) return;
for (int i = 0; i < ...; i++) {
// make a choice
...
// enter the next level of the decision tree
backtrack(...);
// undo the previous choice
...
}
}
You see, this is the idea behind the backtracking algorithm's traversal. It always focuses on the process of moving between nodes, which can be likened to the "branches" on a binary tree.
Take a look at specific backtracking algorithm problems, such as the permutations discussed in Nine Types of Problems Solved by Backtracking Algorithms. Our focus is on each branch:
// core part of the backtracking algorithm code
void backtrack(int[] nums) {
// backtracking algorithm framework
for (int i = 0; i < nums.length; i++) {
// make a choice
used[i] = true;
track.addLast(nums[i]);
// enter the next level of the backtracking tree
backtrack(nums);
// undo the choice
track.removeLast();
used[i] = false;
}
}
Example 3: Demonstrating the DFS Concept
Example 3: I give you a binary tree, and I ask you to write a traverse
function that increments the value of each node in the binary tree by one. It's quite simple, and the code is as follows:
void traverse(TreeNode root) {
if (root == null) return;
// increment the value of each traversed node by one
root.val++;
traverse(root.left);
traverse(root.right);
}
void traverse(TreeNode* root) {
if (root == nullptr) return;
// increment the value of each traversed node by one
root->val++;
traverse(root->left);
traverse(root->right);
}
def traverse(root):
if root is None:
return
# increment the value of each traversed node by one
root.val += 1
traverse(root.left)
traverse(root.right)
func traverse(root *TreeNode) {
if root == nil {
return
}
// increment the value of each visited node by one
root.Val++
traverse(root.Left)
traverse(root.Right)
}
var traverse = function(root) {
if (root === null) return;
// increment the value of each traversed node by one
root.val++;
traverse(root.left);
traverse(root.right);
}
You see, this is the idea behind the DFS algorithm traversal. It always focuses on a single node. In the context of a binary tree, it means processing each "node".
Take a look at specific DFS algorithm problems, such as those discussed in Master All Island Problems in One Article. Our focus is on each cell (node) in the grid
array. We need to process the cells we traverse, which is why we use the DFS algorithm to solve these problems:
// Core logic of DFS algorithm
void dfs(int[][] grid, int i, int j) {
int m = grid.length, n = grid[0].length;
if (i < 0 || j < 0 || i >= m || j >= n) {
return;
}
if (grid[i][j] == 0) {
return;
}
// Mark each visited cell as 0
grid[i][j] = 0;
dfs(grid, i + 1, j);
dfs(grid, i, j + 1);
dfs(grid, i - 1, j);
dfs(grid, i, j - 1);
}
Alright, please take a closer look at the three simple examples above. Do they reflect what I mentioned: dynamic programming focuses on the entire "subtree", backtracking focuses on the "branches" between nodes, and DFS focuses on individual "nodes"?
With this foundation, it will be easier for you to understand why the positions of "making choices" and "undoing choices" differ in backtracking and DFS algorithms. Take a look at the following two pieces of code:
// DFS algorithm puts the logic of "making a choice" and "undoing a choice" outside the for loop
void dfs(Node root) {
if (root == null) return;
// make a choice
print("enter node %s", root);
for (Node child : root.children) {
dfs(child);
}
// undo a choice
print("leave node %s", root);
}
// Backtracking algorithm puts the logic of "making a
// choice" and "undoing a choice" inside the for loop
void backtrack(Node root) {
if (root == null) return;
for (Node child : root.children) {
// make a choice
print("I'm on the branch from %s to %s", root, child);
backtrack(child);
// undo a choice
print("I'll leave the branch from %s to %s", child, root);
}
}
// In DFS algorithm, the logic of "making a choice" and
// "undoing a choice" is placed outside the for loop
void dfs(Node* root) {
if (!root) return;
// make a choice
printf("enter node %s\n", root->val.c_str());
for (Node* child : root->children) {
dfs(child);
}
// undo a choice
printf("leave node %s\n", root->val.c_str());
}
// In backtracking algorithm, the logic of "making a
// choice" and "undoing a choice" is placed inside the for
void backtrack(Node* root) {
if (!root) return;
for (Node* child : root->children) {
// make a choice
printf("I'm on the branch from %s to %s\n", root->val.c_str(), child->val.c_str());
backtrack(child);
// undo a choice
printf("I'll leave the branch from %s to %s\n", child->val.c_str(), root->val.c_str());
}
}
# The DFS algorithm puts the logic of "making a
# choice" and "undoing a choice" outside the for
def dfs(root):
if root is None:
return
# make a choice
print("enter node %s" % root)
for child in root.children:
dfs(child)
# undo a choice
print("leave node %s" % root)
# The backtracking algorithm puts the logic of "making
# a choice" and "undoing a choice" inside the for loop
def backtrack(root):
if root is None:
return
for child in root.children:
# make a choice
print("I'm on the branch from %s to %s" % (root, child))
backtrack(child)
# undo a choice
print("I'll leave the branch from %s to %s" % (child, root))
import "fmt"
// The DFS algorithm places the logic of "making
// choices" and "undoing choices" outside the for
func Dfs(root *Node) {
if root == nil {
return
}
// make a choice
fmt.Printf("enter node %v\n", root)
for _, child := range root.children {
Dfs(child)
}
// undo the choice
fmt.Printf("leave node %v\n", root)
}
// The backtracking algorithm places the logic of
// "making choices" and "undoing choices" inside the for
func Backtrack(root *Node) {
if root == nil {
return
}
for _, child := range root.children {
// make a choice
fmt.Printf("I'm on the branch from %v to %v\n", root, child)
Backtrack(child)
// undo the choice
fmt.Printf("I'll leave the branch from %v to %v\n", child, root)
}
}
// DFS algorithm places the logic of "making choices" and "undoing choices" outside the for loop
var dfs = function(root) {
if (root == null) return;
// make choices
console.log("enter node %s", root);
for (var i = 0; i < root.children.length; i++) {
dfs(root.children[i]);
}
// undo choices
console.log("leave node %s", root);
}
// Backtracking algorithm places the logic of "making
// choices" and "undoing choices" inside the for loop
var backtrack = function(root) {
if (root == null) return;
for (var i = 0; i < root.children.length; i++) {
var child = root.children[i];
// make choices
console.log("I'm on the branch from %s to %s", root, child);
backtrack(child);
// undo choices
console.log("I'll leave the branch from %s to %s", child, root);
}
}
See, in a backtracking algorithm, you must place the logic for "making a choice" and "undoing a choice" inside the for loop; otherwise, how can you access both ends of the "branch"?
Level Order Traversal
Binary tree problems are mainly used to develop recursive thinking. Level order traversal, however, is an iterative traversal and relatively simple. Let's go through the code framework:
// Input the root node of a binary tree, perform level order traversal of this binary tree
void levelTraverse(TreeNode root) {
if (root == null) return;
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
// Traverse each level of the binary tree from top to bottom
while (!q.isEmpty()) {
int sz = q.size();
// Traverse each node of each level from left to right
for (int i = 0; i < sz; i++) {
TreeNode cur = q.poll();
// Put the nodes of the next level into the queue
if (cur.left != null) {
q.offer(cur.left);
}
if (cur.right != null) {
q.offer(cur.right);
}
}
}
}
// input the root node of a binary tree, and perform level order traversal on this binary tree
void levelTraverse(TreeNode* root) {
if (root == nullptr) return;
queue<TreeNode*> q;
q.push(root);
// traverse each level of the binary tree from top to bottom
while (!q.empty()) {
int sz = q.size();
// traverse each node of each level from left to right
for (int i = 0; i < sz; i++) {
TreeNode* cur = q.front();
q.pop();
// put the nodes of the next level into the queue
if (cur->left != nullptr) {
q.push(cur->left);
}
if (cur->right != nullptr) {
q.push(cur->right);
}
}
}
}
# Input the root node of a binary tree and perform level-order traversal on the tree
def levelTraverse(root: TreeNode) -> None:
if root is None:
return
q = [root]
# Traverse each level of the binary tree from top to bottom
while q:
sz = len(q)
# Traverse each node of the level from left to right
for _ in range(sz):
cur = q.pop(0)
# Put the nodes of the next level into the queue
if cur.left is not None:
q.append(cur.left)
if cur.right is not None:
q.append(cur.right)
// input the root node of a binary tree and perform level order traversal on it
func levelTraverse(root *TreeNode) {
if root == nil {
return
}
q := make([]*TreeNode, 0)
q = append(q, root)
// traverse each level of the binary tree from top to bottom
for len(q) > 0 {
sz := len(q)
// traverse each node of each level from left to right
for i := 0; i < sz; i++ {
cur := q[0]
q = q[1:]
// put the nodes of the next level into the queue
if cur.Left != nil {
q = append(q, cur.Left)
}
if cur.Right != nil {
q = append(q, cur.Right)
}
}
}
}
// input the root node of a binary tree, perform level order traversal on this binary tree
var levelTraverse = function(root) {
if (root == null) return;
var q = [];
q.push(root);
// traverse each level of the binary tree from top to bottom
while (q.length != 0) {
var sz = q.length;
// traverse each node of each level from left to right
for (var i = 0; i < sz; i++) {
var cur = q.shift();
// put the nodes of the next level into the queue
if (cur.left != null) {
q.push(cur.left);
}
if (cur.right != null) {
q.push(cur.right);
}
}
}
};
In this context, the while
loop and for
loop manage traversal from top to bottom and from left to right:
The previous article on the BFS Algorithm Framework is an extension of level-order traversal of binary trees and is commonly used for solving shortest path problems in unweighted graphs.
Of course, this framework can be flexibly modified. If a problem does not require recording levels (steps), the for
loop in the above framework can be removed. For instance, in the previous discussion on Dijkstra's Algorithm, the shortest path problem in weighted graphs is explored in detail, extending the BFS algorithm.
It's worth mentioning that some binary tree problems that clearly require level-order traversal techniques can also be solved using recursive traversal. This approach is more skillful and tests your understanding of pre-order, in-order, and post-order traversal.
This article is already quite lengthy, and I've thoroughly explained various patterns in binary tree problems concerning pre-order, in-order, and post-order positions. How much you can apply depends on your own practice and reflection.
I hope everyone can explore as many solutions as possible. Once you understand the principles of binary trees, a fundamental data structure, it will be easy to find leverage when learning other advanced algorithms, creating a closed loop of understanding.
Finally, in the Binary Tree Recursion Special Practice, you will be guided step-by-step to apply the techniques discussed in this article.
Addressing Questions from the Comments Section
Regarding level-order traversal (and its extension, the BFS Algorithm Framework), I would like to add a few final words.
If you are sufficiently familiar with binary trees, you can think of many ways to achieve level-order traversal results through recursive functions, such as the following approach:
class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> levelTraverse(TreeNode root) {
if (root == null) {
return res;
}
// root is considered as level 0
traverse(root, 0);
return res;
}
void traverse(TreeNode root, int depth) {
if (root == null) {
return;
}
// pre-order position, check if nodes of depth level are already stored
if (res.size() <= depth) {
// first time entering depth level
res.add(new LinkedList<>());
}
// pre-order position, add root node's value at depth level
res.get(depth).add(root.val);
traverse(root.left, depth + 1);
traverse(root.right, depth + 1);
}
}
class Solution {
public:
vector<vector<int>> res;
vector<vector<int>> levelTraverse(TreeNode* root) {
if (root == nullptr) {
return res;
}
// root is considered as level 0
traverse(root, 0);
return res;
}
void traverse(TreeNode* root, int depth) {
if (root == nullptr) {
return;
}
// in preorder position, check if the nodes of level depth are already stored
if (res.size() <= depth) {
// first time entering level depth
res.push_back(vector<int> {});
}
// in preorder position, add the value of root node to level depth
res[depth].push_back(root->val);
traverse(root->left, depth + 1);
traverse(root->right, depth + 1);
}
};
class Solution:
def __init__(self):
self.res = []
def levelTraverse(self, root):
if root is None:
return self.res
# root is considered as level 0
self.traverse(root, 0)
return self.res
def traverse(self, root, depth):
if root is None:
return
# pre-order position, check if the nodes at level depth have already been stored
if len(self.res) <= depth:
# first time entering level depth
self.res.append([])
# pre-order position, add the value of root node at level depth
self.res[depth].append(root.val)
self.traverse(root.left, depth + 1)
self.traverse(root.right, depth + 1)
func levelTraverse(root *TreeNode) [][]int {
res := make([][]int, 0)
if root == nil {
return res
}
// root is considered as level 0
traverse(root, 0, &res)
return res
}
func traverse(root *TreeNode, depth int, res *[][]int) {
if root == nil {
return
}
// in pre-order position, check if nodes at depth level are already stored
if len(*res) <= depth {
// entering depth level for the first time
*res = append(*res, make([]int, 0))
}
// in pre-order position, add the value of the root node at depth level
(*res)[depth] = append((*res)[depth], root.Val)
traverse(root.Left, depth+1, res)
traverse(root.Right, depth+1, res)
}
var levelTraverse = function(){
res = [];
const traverse = function(root, depth) {
if (root === null) {
return;
}
// pre-order position, check if the nodes at depth level have been stored
if (res.length <= depth) {
// entering depth level for the first time
res.push([]);
}
// pre-order position, add the value of root node at depth level
res[depth].push(root.val);
traverse(root.left, depth + 1);
traverse(root.right, depth + 1);
}
// consider root as level 0
traverse(root, 0);
return res;
}
This approach can indeed produce a level-order traversal result, but its essence is still a pre-order traversal of the binary tree, or a DFS (Depth-First Search) approach, rather than a level-order traversal or BFS (Breadth-First Search) approach. This solution relies on the top-down, left-to-right order characteristic of pre-order traversal to get the correct result.
To abstract it a bit, this solution is more like a left-to-right "column-order traversal," rather than a top-down "level-order traversal." Therefore, for scenarios that require calculating the minimum distance, this solution is essentially equivalent to the DFS algorithm and does not have the performance advantages of the BFS algorithm.
Additionally, an excellent reader commented on a recursive method for level-order traversal:
class Solution {
List<List<Integer>> res = new LinkedList<>();
public List<List<Integer>> levelTraverse(TreeNode root) {
if (root == null) {
return res;
}
List<TreeNode> nodes = new LinkedList<>();
nodes.add(root);
traverse(nodes);
return res;
}
void traverse(List<TreeNode> curLevelNodes) {
// base case
if (curLevelNodes.isEmpty()) {
return;
}
// pre-order position, calculate the values of
// the current level and the node list of the
List<Integer> nodeValues = new LinkedList<>();
List<TreeNode> nextLevelNodes = new LinkedList<>();
for (TreeNode node : curLevelNodes) {
nodeValues.add(node.val);
if (node.left != null) {
nextLevelNodes.add(node.left);
}
if (node.right != null) {
nextLevelNodes.add(node.right);
}
}
// add results in pre-order position to get top-down level order traversal
res.add(nodeValues);
traverse(nextLevelNodes);
// add results in post-order position to get bottom-up level order traversal
// res.add(nodeValues);
}
}
class Solution {
private:
vector<vector<int>> res;
public:
vector<vector<int>> levelTraverse(TreeNode* root) {
if (root == NULL) {
return res;
}
vector<TreeNode*> nodes;
nodes.push_back(root);
traverse(nodes);
return res;
}
void traverse(vector<TreeNode*>& curLevelNodes) {
// base case
if (curLevelNodes.empty()) {
return;
}
// pre-order position, calculate the values of the
// current level and the list of nodes for the next
vector<int> nodeValues;
vector<TreeNode*> nextLevelNodes;
for (TreeNode* node : curLevelNodes) {
nodeValues.push_back(node->val);
if (node->left != NULL) {
nextLevelNodes.push_back(node->left);
}
if (node->right != NULL) {
nextLevelNodes.push_back(node->right);
}
}
// add results in pre-order position to get top-down level order traversal
res.push_back(nodeValues);
traverse(nextLevelNodes);
// add results in post-order position to get bottom-up level order traversal
// res.push_back(nodeValues);
}
};
class Solution:
def __init__(self):
self.res = []
def levelTraverse(self, root):
if not root:
return self.res
nodes = [root]
self.traverse(nodes)
return self.res
def traverse(self, curLevelNodes):
# base case
if not curLevelNodes:
return
# pre-order position, calculate the values of the
# current level and the list of nodes for the next
nodeValues = []
nextLevelNodes = []
for node in curLevelNodes:
nodeValues.append(node.val)
if node.left:
nextLevelNodes.append(node.left)
if node.right:
nextLevelNodes.append(node.right)
# add results at pre-order position, can get top-down level order traversal
self.res.append(nodeValues)
self.traverse(nextLevelNodes)
# add results at post-order position, can get bottom-up level order traversal result
# res.append(nodeValues)
// The converted levelTraverse function
func levelTraverse(root *TreeNode) [][]int {
res := [][]int{}
if root == nil {
return res
}
nodes := []*TreeNode{root}
traverse(nodes, &res)
// return the final results
return res
}
// The converted traverse function
func traverse(curLevelNodes []*TreeNode, res *[][]int) {
// base case
if len(curLevelNodes) == 0 {
return
}
// Preorder position, calculate the values of the
// current level and the list of nodes for the next
nodeValues := []int{}
nextLevelNodes := []*TreeNode{}
for _, node := range curLevelNodes {
nodeValues = append(nodeValues, node.Val)
if node.Left != nil {
nextLevelNodes = append(nextLevelNodes, node.Left)
}
if node.Right != nil {
nextLevelNodes = append(nextLevelNodes, node.Right)
}
}
// Preorder position to add results, achieving top-down level order traversal
*res = append(*res, nodeValues)
// Traverse the next level
traverse(nextLevelNodes, res)
// Postorder position to add results, achieving bottom-up level order traversal
// *res = append(*res, nodeValues)
}
var res = [];
var levelTraverse = function(root) {
if (root === null) {
return res;
}
let nodes = [];
nodes.push(root);
traverse(nodes);
return res;
};
var traverse = function(curLevelNodes) {
// base case
if (curLevelNodes.length === 0) {
return;
}
// pre-order position, calculate the values of the
// current level and the node list of the next
let nodeValues = [];
let nextLevelNodes = [];
for (let node of curLevelNodes) {
nodeValues.push(node.val);
if (node.left !== null) {
nextLevelNodes.push(node.left);
}
if (node.right !== null) {
nextLevelNodes.push(node.right);
}
}
// add results at pre-order position to get top-down level order traversal
res.push(nodeValues);
traverse(nextLevelNodes);
// add results at post-order position to get bottom-up level order traversal
// res.push(nodeValues);
};
The traverse
function is very similar to a recursive traversal function for singly linked lists. Essentially, it abstracts each level of the binary tree as a node of a singly linked list for traversal.
Compared to the previous recursive solution, this recursive approach is a top-down "level-order traversal," which is closer to the essence of BFS. It can be seen as an extension of BFS algorithm implemented recursively.
Related Problems
You can install my Chrome extension then open the link.