How to Determine a Palindrome Linked List
Note
Now all the plugins has supported English. I'm still improving the website...
This article will resolve
LeetCode | Difficulty |
---|---|
234. Palindrome Linked List | 🟢 |
Prerequisites
Before reading this article, you need to learn:
In the previous article Summary of Two-Pointer Techniques for Arrays, we discussed problems related to palindromic strings and sequences. Let's briefly review.
The core idea of finding palindromic strings is to expand from the center to both ends:
// Find the longest palindrome in s with s[left] and s[right] as the center
String palindrome(String s, int left, int right) {
// Prevent index out of bounds
while (left >= 0 && right < s.length()
&& s.charAt(left) == s.charAt(right)) {
// Two pointers, expand to both sides
left--;
right++;
}
// Return the longest palindrome with s[left] and s[right] as the center
return s.substring(left + 1, right);
}
// Find the longest palindrome in s with s[left] and s[right] as the center
string palindrome(string s, int left, int right) {
// Prevent index out of bounds
while (left >= 0 && right < s.length()
&& s[left] == s[right]) {
// Two pointers, expand to both sides
left--;
right++;
}
// Return the longest palindrome with s[left] and s[right] as the center
return s.substr(left + 1, right - left - 1);
}
# Find the longest palindrome in s with s[left] and s[right] as the center
def palindrome(s: str, left: int, right: int) -> str:
# Prevent index out of bounds
while left >= 0 and right < len(s) and s[left] == s[right]:
# Two pointers, expand to both sides
left -= 1
right += 1
# Return the longest palindrome with s[left] and s[right] as the center
return s[(left + 1):right]
// Find the longest palindrome in s with s[left] and s[right] as the center
func palindrome(s string, left int, right int) string {
// Prevent index out of bounds
for left >= 0 && right < len(s) && s[left] == s[right] {
// Two pointers, expand to both sides
left--
right++
}
// Return the longest palindrome with s[left] and s[right] as the center
return s[(left + 1):right]
}
// Find the longest palindrome in s with s[left] and s[right] as the center
var palindrome = function(s, left, right) {
// prevent index out of bounds
while (left >= 0 && right < s.length && s.charAt(left) == s.charAt(right)) {
// two pointers, expand to both sides
left--;
right++;
}
// return the longest palindrome with s[left] and s[right] as the center
return s.substring(left + 1, right);
};
Since the length of a palindrome can be either odd or even, there is only one center point when the length is odd, and there are two center points when the length is even. Therefore, the function above needs to take l
and r
as inputs.
However, determining whether a string is a palindrome is much simpler. You don't need to consider the parity of the length. You just need to use the Two-Pointer Technique, approaching from both ends towards the middle:
boolean isPalindrome(String s) {
// two pointers, one on the left and one on the right, move towards each other
int left = 0, right = s.length() - 1;
while (left < right) {
if (s.charAt(left) != s.charAt(right)) {
return false;
}
left++;
right--;
}
return true;
}
bool isPalindrome(string s) {
// two pointers, one on the left and one on the right, move towards each other
int left = 0, right = s.length() - 1;
while (left < right) {
if (s[left] != s[right]) {
return false;
}
left++;
right--;
}
return true;
}
def isPalindrome(s: str) -> bool:
# two pointers, one on the left and one on the right, moving towards each other
left, right = 0, len(s) - 1
while left < right:
if s[left] != s[right]:
return False
left += 1
right -= 1
return True
func isPalindrome(s string) bool {
// two pointers, one on the left and one on the right, moving towards each other
left, right := 0, len(s) - 1
for left < right {
if s[left] != s[right] {
return false
}
left++
right--
}
return true
}
var isPalindrome = function(s) {
// two pointers, one on the left and one on the right, move towards each other
let left = 0, right = s.length - 1;
while (left < right) {
if (s.charAt(left) !== s.charAt(right)) {
return false;
}
left++;
right--;
}
return true;
};
The above code is quite straightforward, because palindromes are symmetric, they should read the same forwards and backwards. This characteristic is key to solving palindrome problems.
Now, let's extend this simplest case to solve: how to determine if a "singly linked list" is a palindrome.
I. Determining if a Singly Linked List is a Palindrome
Take a look at LeetCode problem #234 "Palindrome Linked List":
234. Palindrome Linked List | LeetCode |
Given the head
of a singly linked list, return true
if it is a palindrome or false
otherwise.
Example 1:
Input: head = [1,2,2,1] Output: true
Example 2:
Input: head = [1,2] Output: false
Constraints:
- The number of nodes in the list is in the range
[1, 105]
. 0 <= Node.val <= 9
O(n)
time and O(1)
space?The function signature is as follows:
boolean isPalindrome(ListNode head);
The crux of this problem is that a singly linked list cannot be traversed backwards, making it impossible to use the two-pointer technique.
The simplest approach is to reverse the original list and store it in a new list, then compare the two lists to see if they are the same. For how to reverse a linked list, you can refer to the previous article Recursively Reversing a Part of a Linked List.
In Framework Thinking for Learning Data Structures, I mentioned that linked lists have a recursive structure, and tree structures are merely extensions of linked lists. Therefore, linked lists can also have pre-order and post-order traversals. By borrowing the idea of post-order traversal from binary trees, we can traverse a linked list in reverse without explicitly reversing the original list:
// Binary tree traversal framework
void traverse(TreeNode root) {
// Pre-order traversal code
traverse(root.left);
// In-order traversal code
traverse(root.right);
// Post-order traversal code
}
// Recursively traverse a single linked list
void traverse(ListNode head) {
// Pre-order traversal code
traverse(head.next);
// Post-order traversal code
}
// Binary tree traversal framework
void traverse(TreeNode* root) {
// Pre-order traversal code
traverse(root->left);
// In-order traversal code
traverse(root->right);
// Post-order traversal code
}
// Recursively traverse a single linked list
void traverse(ListNode* head) {
// Pre-order traversal code
traverse(head->next);
// Post-order traversal code
}
# Binary tree traversal framework
def traverse(root: TreeNode) -> None:
# Pre-order traversal code
traverse(root.left)
# In-order traversal code
traverse(root.right)
# Post-order traversal code
# Recursively traverse a single linked list
def traverse(head: ListNode) -> None:
# Pre-order traversal code
traverse(head.next)
# Post-order traversal code
// Binary tree traversal framework
func traverse(root *TreeNode) {
// Pre-order traversal code
traverse(root.left)
// In-order traversal code
traverse(root.right)
// Post-order traversal code
}
// Recursively traverse a single linked list
func traverse(head *ListNode) {
// Pre-order traversal code
traverse(head.Next)
// Post-order traversal code
}
// Binary tree traversal framework
var traverse = function(root) {
// Pre-order traversal code
traverse(root.left);
// In-order traversal code
traverse(root.right);
// Post-order traversal code
};
// Recursively traverse a single linked list
var traverse = function(head) {
// Pre-order traversal code
traverse(head.next);
// Post-order traversal code
};
What is the guiding significance of this framework? If you want to print the val
values in a linked list in order, you can write code at the pre-order traversal position; conversely, if you want to traverse the linked list in reverse order, you can operate at the post-order traversal position:
// Print the element values in a singly linked list in reverse order
void traverse(ListNode head) {
if (head == null) return;
traverse(head.next);
// Post-order traversal code
print(head.val);
}
// Print the elements of a singly linked list in reverse order
void traverse(ListNode* head) {
if (head == NULL) return;
traverse(head->next);
// Post-order traversal code
print(head->val);
}
# Print the element values in the single linked list in reverse order
def traverse(head: ListNode):
if head is None:
return
traverse(head.next)
# Post-order traversal code
print(head.val)
// Print the element values in the single linked list in reverse order
func traverse(head *ListNode) {
if head == nil {
return
}
traverse(head.Next)
// Post-order traversal code
print(head.Val)
}
// Print the elements of a singly linked list in reverse order
function traverse(head) {
if (head === null) {
return;
}
traverse(head.next);
// Post-order traversal code
console.log(head.val);
}
Speaking of this, we can actually make a slight modification to mimic the two-pointer technique for implementing palindrome checking functionality:
class Solution {
// pointer moving from left to right
ListNode left;
// pointer moving from right to left
ListNode right;
// record if the linked list is a palindrome
boolean res = true;
boolean isPalindrome(ListNode head) {
left = head;
traverse(head);
return res;
}
void traverse(ListNode right) {
if (right == null) {
return;
}
// use recursion to reach the end of the linked list
traverse(right.next);
// in post-order traversal, the right pointer points to the end of the linked list
// so we can compare it with the left pointer to check if it's a palindrome linked list
if (left.val != right.val) {
res = false;
}
left = left.next;
}
}
class Solution {
public:
// pointer moving from left to right
ListNode* left;
// pointer moving from right to left
ListNode* right;
// record if the linked list is a palindrome
bool res = true;
bool isPalindrome(ListNode* head) {
left = head;
traverse(head);
return res;
}
void traverse(ListNode* right) {
if (right == nullptr) {
return;
}
// use recursion to reach the end of the linked list
traverse(right->next);
// in post-order position, the right pointer is at the end of the linked list
// so we can compare it with the left
// pointer to check if the linked list is a
if (left->val != right->val) {
res = false;
}
left = left->next;
}
};
class Solution:
# pointer moving from left to right
left = None
# pointer moving from right to left
right = None
# record whether the linked list is a palindrome
res = True
def isPalindrome(self, head: ListNode) -> bool:
self.left = head
self.traverse(head)
return self.res
def traverse(self, right: ListNode):
if right is None:
return
# use recursion to reach the end of the linked list
self.traverse(right.next)
# in the post-order position, the right pointer points to the end of the linked list
# so it can be compared with the left
# pointer to determine if it is a palindrome
if self.left.val != right.val:
self.res = False
self.left = self.left.next
func isPalindrome(head *ListNode) bool {
// pointer moving from left to right
left := head
// pointer moving from right to left
var right *ListNode
// record whether the linked list is a palindrome
res := true
var traverse func(right *ListNode)
traverse = func(right *ListNode) {
if right == nil {
return
}
// use recursion to reach the end of the linked list
traverse(right.Next)
// post-order traversal position, at this time the right
// pointer points to the tail of the right side of the
// so it can be compared with the left pointer
// to determine whether it is a palindrome
if left.Val != right.Val {
res = false
}
left = left.Next
}
right = head
traverse(right)
return res
}
var isPalindrome = function(head) {
// pointer moving from left to right
let left = head;
// pointer moving from right to left
let right = null;
// record whether the linked list is a palindrome
let res = true;
var traverse = function(right) {
if (right === null) {
return;
}
// use recursion to reach the end of the linked list
traverse(right.next);
// postorder traversal position, at this point the
// right pointer points to the right end of the
// so we can compare with the left pointer
// to determine if it is a palindrome linked
if (left.val !== right.val) {
res = false;
}
left = left.next;
};
right = head;
traverse(right);
return res;
};
What is the core logic behind this approach? Essentially, it involves placing linked list nodes onto a stack and then retrieving them, which reverses their order. Here, we are simply utilizing the call stack of a recursive function.
Of course, whether creating a reversed linked list or using post-order traversal, the time and space complexity of the algorithm is O(N). Now, let's consider whether we can solve this problem without using extra space.
2. Optimizing Space Complexity
A better approach is as follows:
1. First, use the fast and slow pointer technique from Linked List Double Pointer Technique to find the midpoint of the linked list:
ListNode slow, fast;
slow = fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
// the slow pointer now points to the middle of the linked list
ListNode* slow, *fast;
slow = fast = head;
while (fast != nullptr && fast->next != nullptr) {
slow = slow->next;
fast = fast->next->next;
}
// the slow pointer now points to the middle of the linked list
slow, fast = head, head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
# the slow pointer now points to the middle of the linked list
var slow, fast *ListNode
slow, fast = head, head
for fast != nil && fast.Next != nil {
slow = slow.Next
fast = fast.Next.Next
}
// slow now points to the middle of the linked list
var slow, fast;
slow = fast = head;
while (fast !== null && fast.next !== null) {
slow = slow.next;
fast = fast.next.next;
}
// the slow pointer now points to the middle of the linked list
2. If the fast
pointer is not pointing to null
, it indicates the linked list has an odd length, and slow
needs to move one more step forward:
if (fast != null)
slow = slow.next;
3. Begin reversing the linked list from the slow
pointer onward, and now you can start comparing for palindrome:
ListNode left = head;
ListNode right = reverse(slow);
while (right != null) {
if (left.val != right.val)
return false;
left = left.next;
right = right.next;
}
return true;
ListNode* left = head;
ListNode* right = reverse(slow);
while (right != nullptr) {
if (left->val != right->val)
return false;
left = left->next;
right = right->next;
}
return true;
left, right = head, reverse(slow)
while right:
if left.val != right.val:
return False
left, right = left.next, right.next
return True
left := head
right := reverse(slow)
for right != nil {
if left.Val != right.Val {
return false
}
left = left.Next
right = right.Next
}
return true
let left = head;
let right = reverse(slow);
while (right !== null) {
if (left.val !== right.val)
return false;
left = left.next;
right = right.next;
}
return true;
So far, combining the above 3 segments of code efficiently solves the problem. You can refer to the reverse
function in Reverse a Singly Linked List:
class Solution {
public boolean isPalindrome(ListNode head) {
ListNode slow, fast;
slow = fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
if (fast != null)
slow = slow.next;
ListNode left = head;
ListNode right = reverse(slow);
while (right != null) {
if (left.val != right.val)
return false;
left = left.next;
right = right.next;
}
return true;
}
ListNode reverse(ListNode head) {
ListNode pre = null, cur = head;
while (cur != null) {
ListNode next = cur.next;
cur.next = pre;
pre = cur;
cur = next;
}
return pre;
}
}
class Solution {
public:
bool isPalindrome(ListNode* head) {
ListNode* slow, *fast;
slow = fast = head;
while (fast != nullptr && fast->next != nullptr) {
slow = slow->next;
fast = fast->next->next;
}
if (fast != nullptr)
slow = slow->next;
ListNode* left = head;
ListNode* right = reverse(slow);
while (right != nullptr) {
if (left->val != right->val)
return false;
left = left->next;
right = right->next;
}
return true;
}
ListNode* reverse(ListNode* head) {
ListNode* pre = nullptr, *cur = head;
while (cur != nullptr) {
ListNode* next = cur->next;
cur->next = pre;
pre = cur;
cur = next;
}
return pre;
}
};
class Solution:
def isPalindrome(self, head: ListNode) -> bool:
slow = fast = head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if fast:
slow = slow.next
left = head
right = self.reverse(slow)
while right:
if left.val != right.val:
return False
left = left.next
right = right.next
return True
def reverse(self, head: ListNode) -> ListNode:
pre = None
cur = head
while cur:
next = cur.next
cur.next = pre
pre = cur
cur = next
return pre
func isPalindrome(head *ListNode) bool {
var slow, fast *ListNode
slow, fast = head, head
for fast != nil && fast.Next != nil {
slow = slow.Next
fast = fast.Next.Next
}
if fast != nil {
slow = slow.Next
}
left, right := head, reverse(slow)
for right != nil {
if left.Val != right.Val {
return false
}
left = left.Next
right = right.Next
}
return true
}
func reverse(head *ListNode) *ListNode {
var pre, cur *ListNode
pre, cur = nil, head
for cur != nil {
next := cur.Next
cur.Next = pre
pre = cur
cur = next
}
return pre
}
var isPalindrome = function(head) {
let slow, fast;
slow = fast = head;
while (fast !== null && fast.next !== null) {
slow = slow.next;
fast = fast.next.next;
}
if (fast !== null)
slow = slow.next;
let left = head;
let right = reverse(slow);
while (right !== null) {
if (left.val !== right.val)
return false;
left = left.next;
right = right.next;
}
return true;
};
function reverse(head) {
let pre = null, cur = head;
while (cur !== null) {
let next = cur.next;
cur.next = pre;
pre = cur;
cur = next;
}
return pre;
}
The algorithm process is shown in the GIF below:
The overall time complexity of the algorithm is O(N) and the space complexity is O(1), which is optimal.
I know some readers may wonder: although this solution is efficient, it disrupts the original structure of the input linked list. Is there a way to avoid this flaw?
In fact, this issue can be easily solved by obtaining the positions of the p
and q
pointers:
Thus, you can restore the original order of the linked list by adding a line of code before the function returns:
p.next = reverse(q);
Due to space limitations, I won't write it out here, but readers can try it themselves.
3. Final Summary
Firstly, finding a palindrome involves expanding from the center to the edges, while checking a palindrome involves contracting from the edges to the center. For singly linked lists, reverse traversal is not directly possible, but you can create a new reversed linked list, use post-order traversal, or utilize a stack structure to handle the singly linked list in reverse order.
Specifically, for the problem of checking a palindrome linked list, due to the unique nature of palindromes, it is possible to partially reverse the linked list instead of fully reversing it, reducing the space complexity to O(1).