二叉搜索树操作集锦

GitHub undefined undefined undefined

培养框架思维,真正爱上算法!关注公众号查看更新文章👆

相关推荐:

读完本文,你不仅学会了算法套路,还可以顺便去 LeetCode 上拿下如下题目:

450.删除二叉搜索树中的节点(中等)

701.二叉搜索树中的插入操作(中等)

700.二叉搜索树中的搜索(简单)

98.验证二叉搜索树(中等)


我们前文 手把手刷二叉搜索树(第一期) 主要是利用二叉搜索树「中序遍历有序」的特性来解决了几道题目,本文来实现 BST 的基础操作:判断 BST 的合法性、增、删、查。其中「删」和「判断合法性」略微复杂。

一、判断 BST 的合法性

这里是有坑的哦,我们按照刚才的思路,每个节点自己要做的事不就是比较自己和左右孩子吗?看起来应该这样写代码:

boolean isValidBST(TreeNode root) {
    if (root == null) return true;
    if (root.left != null && root.val <= root.left.val)
        return false;
    if (root.right != null && root.val >= root.right.val)
        return false;

    return isValidBST(root.left)
        && isValidBST(root.right);
}

但是这个算法出现了错误,BST 的每个节点应该要小于右边子树的所有节点,下面这个二叉树显然不是 BST,因为节点 10 的右子树中有一个节点 6,但是我们的算法会把它判定为合法 BST:

出现问题的原因在于,对于每一个节点 root,代码值检查了它的左右孩子节点是否符合左小右大的原则;但是根据 BST 的定义,root 的整个左子树都要小于 root.val,整个右子树都要大于 root.val

问题是,对于某一个节点 root,他只能管得了自己的左右子节点,怎么把 root 的约束传递给左右子树呢?

请看正确的代码:

boolean isValidBST(TreeNode root) {
    return isValidBST(root, null, null);
}

/* 限定以 root 为根的子树节点必须满足 max.val > root.val > min.val */
boolean isValidBST(TreeNode root, TreeNode min, TreeNode max) {
    // base case
    if (root == null) return true;
    // 若 root.val 不符合 max 和 min 的限制,说明不是合法 BST
    if (min != null && root.val <= min.val) return false;
    if (max != null && root.val >= max.val) return false;
    // 限定左子树的最大值是 root.val,右子树的最小值是 root.val
    return isValidBST(root.left, min, root) 
        && isValidBST(root.right, root, max);
}

我们通过使用辅助函数,增加函数参数列表,在参数中携带额外信息,将这种约束传递给子树的所有节点,这也是二叉树算法的一个小技巧吧

在 BST 中搜索一个数

如果是在二叉树中寻找元素,可以这样写代码:

boolean isInBST(TreeNode root, int target) {
    if (root == null) return false;
    if (root.val == target) return true;
    // 当前节点没找到就递归地去左右子树寻找
    return isInBST(root.left, target)
        || isInBST(root.right, target);
}

这样写完全正确,但这段代码相当于穷举了所有节点,适用于所有普通二叉树。那么应该如何充分利用信息,把 BST 这个「左小右大」的特性用上?

很简单,其实不需要递归地搜索两边,类似二分查找思想,根据 targetroot.val 的大小比较,就能排除一边。我们把上面的思路稍稍改动:

boolean isInBST(TreeNode root, int target) {
    if (root == null) return false;
    if (root.val == target)
        return true;
    if (root.val < target) 
        return isInBST(root.right, target);
    if (root.val > target)
        return isInBST(root.left, target);
    // root 该做的事做完了,顺带把框架也完成了,妙
}

于是,我们对原始框架进行改造,抽象出一套针对 BST 的遍历框架

void BST(TreeNode root, int target) {
    if (root.val == target)
        // 找到目标,做点什么
    if (root.val < target) 
        BST(root.right, target);
    if (root.val > target)
        BST(root.left, target);
}

这个代码框架其实和二叉树的遍历框架差不多,无非就是利用了 BST 左小右大的特性而已。

在 BST 中插入一个数

对数据结构的操作无非遍历 + 访问,遍历就是「找」,访问就是「改」。具体到这个问题,插入一个数,就是先找到插入位置,然后进行插入操作。

上一个问题,我们总结了 BST 中的遍历框架,就是「找」的问题。直接套框架,加上「改」的操作即可。一旦涉及「改」,函数就要返回 TreeNode 类型,并且对递归调用的返回值进行接收

TreeNode insertIntoBST(TreeNode root, int val) {
    // 找到空位置插入新节点
    if (root == null) return new TreeNode(val);
    // if (root.val == val)
    //     BST 中一般不会插入已存在元素
    if (root.val < val) 
        root.right = insertIntoBST(root.right, val);
    if (root.val > val) 
        root.left = insertIntoBST(root.left, val);
    return root;
}

三、在 BST 中删除一个数

这个问题稍微复杂,跟插入操作类似,先「找」再「改」,先把框架写出来再说:

TreeNode deleteNode(TreeNode root, int key) {
    if (root.val == key) {
        // 找到啦,进行删除
    } else if (root.val > key) {
        // 去左子树找
        root.left = deleteNode(root.left, key);
    } else if (root.val < key) {
        // 去右子树找
        root.right = deleteNode(root.right, key);
    }
    return root;
}

找到目标节点了,比方说是节点 A,如何删除这个节点,这是难点。因为删除节点的同时不能破坏 BST 的性质。有三种情况,用图片来说明。

情况 1A 恰好是末端节点,两个子节点都为空,那么它可以当场去世了。

图片来自 LeetCode

if (root.left == null && root.right == null)
    return null;

情况 2A 只有一个非空子节点,那么它要让这个孩子接替自己的位置。

图片来自 LeetCode

// 排除了情况 1 之后
if (root.left == null) return root.right;
if (root.right == null) return root.left;

情况 3A 有两个子节点,麻烦了,为了不破坏 BST 的性质,A 必须找到左子树中最大的那个节点,或者右子树中最小的那个节点来接替自己。我们以第二种方式讲解。

图片来自 LeetCode

if (root.left != null && root.right != null) {
    // 找到右子树的最小节点
    TreeNode minNode = getMin(root.right);
    // 把 root 改成 minNode
    root.val = minNode.val;
    // 转而去删除 minNode
    root.right = deleteNode(root.right, minNode.val);
}

三种情况分析完毕,填入框架,简化一下代码:

TreeNode deleteNode(TreeNode root, int key) {
    if (root == null) return null;
    if (root.val == key) {
        // 这两个 if 把情况 1 和 2 都正确处理了
        if (root.left == null) return root.right;
        if (root.right == null) return root.left;
        // 处理情况 3
        TreeNode minNode = getMin(root.right);
        root.val = minNode.val;
        root.right = deleteNode(root.right, minNode.val);
    } else if (root.val > key) {
        root.left = deleteNode(root.left, key);
    } else if (root.val < key) {
        root.right = deleteNode(root.right, key);
    }
    return root;
}

TreeNode getMin(TreeNode node) {
    // BST 最左边的就是最小的
    while (node.left != null) node = node.left;
    return node;
}

删除操作就完成了。注意一下,这个删除操作并不完美,因为我们一般不会通过 root.val = minNode.val 修改节点内部的值来交换节点,而是通过一系列略微复杂的链表操作交换 rootminNode 两个节点。

因为具体应用中,val 域可能会是一个复杂的数据结构,修改起来非常麻烦;而链表操作无非改一改指针,而不会去碰内部数据。

不过这里我们暂时忽略这个细节,旨在突出 BST 基本操作的共性,以及借助框架逐层细化问题的思维方式。

最后总结

通过这篇文章,我们总结出了如下几个技巧:

1、如果当前节点会对下面的子节点有整体影响,可以通过辅助函数增长参数列表,借助参数传递信息。

2、在二叉树递归框架之上,扩展出一套 BST 代码框架:

void BST(TreeNode root, int target) {
    if (root.val == target)
        // 找到目标,做点什么
    if (root.val < target) 
        BST(root.right, target);
    if (root.val > target)
        BST(root.left, target);
}

3、根据代码框架掌握了 BST 的增删查改操作。

_____________

《labuladong 的算法小抄》已经出版,关注公众号「labuladong」查看详情;后台回复关键词「进群」可加入算法群,大家一起刷题/内推

Copyright © labuladong 2020 all right reserved,powered by Gitbook该文件修订时间: 2021-04-19 18:19:20

results matching ""

    No results matching ""